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ABSTRACT:

This report documents the design, construction, and validation of the Technology Insertion 2001
application benchmark test package for the Department of Defense (DoD) High Performance Computing
Modemization Program Office (HPCMPO). This test suite contained 12 application programs chosen to
be representative of the DoD’s HPC workload. The report justifies this claim of representativeness. On a
given HPC system, each application program was typically tested using at least two sets of input data, and
each program/input data test case was always tested at multiple numbers of processors. These tests were
done in dedicated mode with no other applications on the system, so as to obtain a presumably “best
possible™ performance. This collection of tests was repeated on five different HPC systems: a Cray T3E,
an IBM POWER2-based SP, an IBM POWER3-based SP, an SGI Origin 2000, and an SGI Origin 3800.
Additionally, two throughput tests constructed to represent HPCMPO workloads were conducted. Again,
the methodology used to obtain representativeness is described.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes.
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
All product names and trademarks cited are the property of their respective owners. The findings of this report are not
to be construed as an official Department of the Army position unless so designated by other authorized documents.
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Summary

The Department of Defense (DoD) High Performance Computing Modern-
ization Program (HPCMP), like any other large corporate user of computer sys-
tems, periodically requires a series of benchmark tests to evaluate the perfor-
mance of proposed competing systems. Previous efforts in this area were not
firmly grounded in HPCMP system usage data and were not formally docu-
mented. This test package, designed to aid decision makers in the HPCMP Tech-
nology Insertion 2001 (TI-01) competitive system procurement, aims to remedy
those shortcomings and provide a starting point for future DoD HPC benchmark
activities.

The quality of any benchmark test package depends on the presence of sev-
eral important characteristics. These characteristics serve as goals for the test
package constructor and guide the constructor in the selection of test package
components (e.g., synthetic tests and application codes). The first and most
important characteristic is that the benchmark must be representative of both cur-
rent and projected system workloads. The types, patterns, and rates of computa-
tion, communication, and input/output of programs in the test package must
match those of programs actually in use to as great a degree as possible. Further-
more, the programs in the test package must be imposed on the system under test
(SUT) in a manner similar to that in practice. Second, demonstrating that these
conditions have been met for a range of operating environments and problem
sizes establishes that the benchmark is valid. Third, and this is particularly
important for any HPC benchmark, the test package must be scalable; it must be
possible to vary the number of processors to be used and the size of the test prob-
lem to be solved. Fourth, the test package must be maintainable; the size of the
test package must be kept to a minimum, and the test package must be con-
structed in a modular, easy-to-modify fashion. Finally, the combination of the
above four features, representativeness, validity, scalability, and maintainability,
produces test package durability.

Historically, benchmark test packages have contained codes chosen from one
or more of the following types: (a) relatively short synthetic programs, such as
Whetstone and Streams; (b) toy benchmarks, such as Quicksort and Prime Sieve;
(¢) widely used off-the-shelf codes, or package kernels, such as Linpack and
Scal.LAPACK; (d) application kernels, that is, sections of code, extracted from




actual application programs, that perform a significant fraction of work; and (e)
complete applications. Originally, this test package was to have emphasized
application kernels in order to avoid problems associated with export control and
code portability. However, to provide a timely response to the HPCMP, this test
package consists of complete applications supplemented by synthetic programs.
These latter test components were prepared by Instrumental, Inc., and are docu-
mented elsewhere.

To help ensure the representativeness of the test package, a two-part survey of
the DoD HPC community was conducted. In part one, scientists were asked to
identify (a) the programmatic interface used to implement parallelism in their
codes (e.g., Message Passing Interface (MPI) and Parallel Virtual Machine
(PVM)); (b) the most important types of computations (e.g., flux calculations,
linear equation solution); (c) which of computation, communication, or input/out-
put was dominant; (d) any standard benchmarks or kernels that might already
well represent work in their Computational Technology Area (CTA); and () the
application codes representative of their CTA. Part two of the survey was tai-
Jored to each respondent’s part one reply; it asked additional questions regarding
the precise nature of the computations each scientist typically performed. Gener-
ally, the responses indicated that fast Fourier transforms, flux calculations, and
various types of linear equation solution methods were common computations.

The surveys provided qualitative data on Major Shared Resource Center
(MSRC) workloads; quantitative information came in the form of utilization data
from all four HPCMP MSRCs. These data provided a breakdown of MSRC sys-
tem usage by CTA and by number of central processing units (CPUs) used per
job. This information was used to prepare an aggregate profile of the MSRC
workloads, and jobs were selected to model that profile.

The selected codes were used in two different ways. First, the test package
specified dedicated tests; these were jobs run on an otherwise empty system
designed to measure peak application performance. Second, two throughput tests
were included to measure system performance on simulated production work-
loads. Timing data for the dedicated tests were obtained on five Government-
owned systems. Performance metrics relative to one of these systems, a Silicon
Graphics Origin 3400, were calculated for the other four to better understand sys-
tem behavior and to detect performance trends.

This test package should be viewed as a starting point for a more modular,
and portable test package. It must be revised on a yearly basis so that it will
remain up-to-date. Furthermore, a process must be instituted to periodically
demonstrate the correlation between the test package workload and actual MSRC
workloads. A graphical user interface should be added to relieve the tester of
many of the installation and utilization tasks currently performed from the com-
mand line. Finally, the test package itself should be the object of further develop-
ment. The development process should conform to generally accepted software
engineering practices, and the package should be transformed into a program-
ming systems product as opposed to merely a collection of programs.




1 Introduction

Benchmarking may be defined as a means of estimating the performance of
systems by imposing one or more test workloads on them and then measuring
their performance (Jones 1975). Within this definition there is considerable lati-
tude for the application of benchmarking; CPUs, memory subsystems, input/out-
put (I/O) subsystems, graphics subsystems, disk subsystems, compilers, operating
systems, entire computer systems, multiprocessor computer systems, and local
area networks all may be, and have been, benchmarked. Although there are other
techniques that may be used to evaluate the performance of computer systems
(e.g., analytical modeling and simulation), benchmarking is generally recognized
as the most accurate, and its importance, particularly in the context of computer
systems procurement, has long been recognized (Comptroller General of the
United States 1982, Letmanyi 1984, National Bureau of Standards 1977,
National Bureau of Standards 1980).

Overview of Benchmarking Goals

A benchmark test workload may be constructed using a variety of candidate
test package components, and that workload may be imposed on the system
under test (SUT) in a number of different ways. Therefore, benchmark test
developers need a set of design goals to serve as an evaluation framework for
their product; such a candidate set is presented in the following paragraphs. Like
any realistic set of goals, these are inherently conflicting; thus, developers must
strike an appropriate compromise in the degree to which each goal is met.

Benchmarking is used in three broad contexts: system selection, system
improvement (tuning), and system design (Ferrari 1972). Since the source of
these goals is a General Services Administration handbook (Federal Computer
Performance Evaluation and Simulation Center 1979, Chapter 3), the goals are
naturally oriented toward systems selection. Finally, it is important to realize that
these goals cannot be addressed independently. Achievement of one may pro-
hibit or facilitate the achievement of another.
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Maximize benchmark representativeness

There are several aspects to maximizing benchmark representativeness. First,
the test workload must be an accurate model of the projected actual workload.
Use of programs still in the developmental stage may also be useful as a way to
reflect future processing requirements in the benchmark test (Dongarra, Martin,
and Worlton 1987). A second aspect of representativeness depends on the sys-
tem configured to run the test; it should match the proposed configuration to the
greatest extent possible. However, proposed systems with hundreds of attached
terminals or networked nodes may be impossible to duplicate. A third aspect of
this objective is the benchmarking methodology. If one is purchasing a large-
scale system for scientific computing that will support a large number of users,
then running one or two test jobs, or even a few actual programs, would scarcely
approximate the actual operating environment. On the other hand, it is obv1ously
not possible to incorporate all programs currently in use at the DoD MSRCs! into
a benchmark test package. Finally, it is important to realize that lack of represen-
tativeness does not necessarily imply lack of effectiveness in measuring system
performance.

Maximize benchmark believability/validity

If a benchmark is truly representative of DoD applications, then it becomes a
valid test. As with any experiment (and a benchmark test of a computer is very
much an experiment), the method of taking data must be accepted before the
results are accepted. If the experimental method is, or is perceived to be, flawed,
the results will be dismissed as meaningless. For example, if a test spends 90
percent of its time doing interprocess communication and the existing production
system spends 90 percent of its time doing computation, then the test is not repre-
sentative. Hence, by ensuring that the benchmark test is representative and that
the benchmark guidelines are carefully followed, the results obtained become
believable. Furthermore, it is equally important for the test applications to span
the full spectrum of types of DoD HPC applications. Since no single MSRC, or
machine for that matter, is devoted to a single computational technology area
(CTA),? input must be gathered from all MSRCs and as many CTAs as possible.

! The HPCMP supports four MSRCs to provide DoD scientists access to the latest HPC hardware
and software. These centers are the Army Research Laboratory (ARL) MSRC at Aberdeen Proving
Ground, MD, the Aeronautical System Center (ASC) MSRC at Wright-Patterson Air Force Base,
OH, the U.S. Army Engineer Research and Development Center (ERDC) MSRC at Vicksburg, M5,
and the Naval Oceanographic Office (NAVO) MSRC at Stennis Space Center, MS. See High Per-
formance Computing Modemnization Program (2004) for more information on the MSRCs.

2 The HPCMP CTAs are Computational Chemistry and Materials Science (CCM), Computational
Electromagnetics and Acoustics (CEA), Computational Electronics and Nanoelectronics (CEN),
Computational Fluid Dynamics (CFD), Computational Structural Mechanics (CSM), Cli-
mate/Weather/Ocean Modeling and Simulation (CWO), Environmental Quality Modeling and Sim-
ulation (EQM), Forces Modeling and Simulation/C41 (FMS), Integrated Modeling and Test Envi-
ronments (IMT), and Signal/Image Processing (SIP). This CTA taxonomy provides the structure
for the HRCMP’s Common High Performance Computing Software Support Initiative (CHSSI), the
intent of which is to provide “efficient, scalable, portable software codes, algorithms, tools, models,
and simulations that run on a variety of HPC platforms and are needed by a large number of science
and technology (S&T) and test and evaluation (T&E) scientists and engineers” (High Performance
Computing Modernization Program 2004).
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Only when representative samples of DoD applications are included within the
benchmark, does it become valid.

Maximize benchmark scalability

Development of large-scale parallel systems has created the need for a new
benchmark characteristic: scalability. If the problem size is fixed, then even so-
called “embarrassingly parallel” codes that do no communication until an
answer is obtained will eventually cease to benefit from the use of additional pro-
cessors. Often, system performance will plateau simply due to having a fixed
problem size that is too small to exploit additional processors. Sometimes,
increasing the numbers of CPUs beyond some threshold stops improving a code’s
performance because of the way the code itself is written, but more often this
“performance plateau” is due to having a fixed problem size that is too small to
exploit additional processors. Consequently, as the number of processors in com-
mercially available systems grows, the test package must be revised to include
larger test problems that will exercise systems over a broad range of processor
counts. Specifically, the codes in the test package should be scalable in two
ways: (a) by increasing the number of processors used by such a code and (b) by
increasing the size of the test problem solved by that code. Finally, the test pack-
age should be constructed so as to minimize the effort required of the test pack-
age user to perform a series of tests covering a range of processor counts and
problem sizes.

Maximize benchmark durability

The durability of a benchmark is dependent on how it is perceived by the
HPC community. The elegance and simplicity of the LINPACK benchmark
(Dongarra 2004), for example, have made it one of the most durable HPC bench-
mark tests since its creation in the late 1970s. It is currently used in many accep-
tance tests run on current DoD machines, as well as being used to construct the
“Top 500" list (National Energy Research Scientific Computing Center /
Lawrence Berkeley National Laboratory 2003). Even though no DoD bench-
marking test suite will be as elegant and simple as LINPACK, it will still need to
exhibit LINPACK’s ease of use, generality, portability, understandability, main-
tainability, and adaptability. In short, it should be a “programming systems prod-
uct” and not just a collection of stand-alone programs (Brooks 1975, pp 4-6).

Minimize benchmark discrepancies

Every benchmark has its own “rules of the game” that specify how the tests
are to be conducted. In this context, discrepancies are technical or procedural
differences between these benchmark rules and the manner in which the vendor
actually conducts the test. These differences may result from unintentional
errors, deliberate misrepresentations on the part of the vendor, inadequate bench-
mark documentation provided by the test package developer, or system faults. If
discrepancies are found and it is determined that their impact on quality of sys-
tem sizing, on representativeness, or on some other goal is too severe, the evalua-
tor may elect to invalidate the test.

Chapter 1 Introduction




Maximize benchmark uniformity

Benchmark uniformity implies that the benchmark test imposes the same
workload on each system. This provides for a fair evaluation of vendors, or a fair
evaluation of processor architectures, depending on the context. The intent here
is to ensure a level playing field for each participant. Complete uniformity is
impossible to attain, and an extremely high uniformity requirement may actually
decrease representativeness and increase cost. For example, if vendors are
required to use the same linear equation solver in a test, instead of an equivalent
one tailored to their processor architecture, then the result may be lower observed
performance that does not reflect the way the system will ultimately be used. In
this instance, a generic specification of the problem to be solved, instead of a par-
ticular solver, may preserve both uniformity and representativeness. In some
cases, uniformity may be deliberately violated. To detect benchmark discrepan-
cies and prevent vendors from making special system modifications tailored to a
particular benchmark job mix, benchmark test monitors sometimes make changes
in file contents and order of job submission just prior to a test. Such changes
should not, however, significantly alter the workload demands imposed on the

system.

Maximize benchmark repeatability

“Repeatability”” implies that the same benchmark test performed on the same
system two different times will produce identical results. Because the results of
unrepeatable experiments are inherently suspect, it is imperative that benchmark
implementors pay particular attention to this issue. Complete repeatability is not
possible in complex systems because there are many factors, some beyond the
control of the test designer, affecting this goal. For example, differences in the
order in which pages are loaded into memory may result in different paging or
caching behavior. Furthermore, repeatability is not the same as uniformity,
although they are interrelated and factors that affect the former also affect the lat-
ter. For example, random number generators are used to drive certain aspects of
a benchmark test, and this may prevent both repeatability and uniformity. How-
ever, the differences produced by such factors should not be significant. Finally,
as discussed in the following section, a lack of repeatability may have an adverse
effect on quality of system sizing.

Maximize quality of system sizing

System sizing may be defined as ““the process of determining a configuration
of hardware and software components that can accomplish a specific set of work-
load demands at a required level of performance” (Federal Computer Perfor-
mance Evaluation and Simulation Center 1979, paragraph 3.4.a). Other perfor-
mance evaluation alternatives, such as analytic modeling or discrete event simula-
tion, may be used to reach this goal. However, benchmarking typically exceeds
all of them, not only in its ability to accurately size a target system, but in repre-
sentativeness as well. Unfortunately, it also typically exceeds all of them in cost.
Nevertheless, the possibility of obtaining an undersized system that cannot han-
dle the projected workload, or an oversized system that is too expensive, often
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compels agencies to require benchmarking. It is then incumbent upon the agency
to specify a test workload that accurately models the projected actual workload
so that vendors may propose correctly sized systems.

Minimize time and cost of acquisition

Attempts to make a benchmark test more thorough and representative gener-
ally make it larger and more complex. As benchmark size and complexity
increase, additional time and money must be spent by the user to describe, imple-
ment, and validate a benchmark, to document benchmark procedures for vendors,
to answer vendor questions, and to analyze the benchmark results. Therefore, the
benchmark must generally strike a compromise between this goal and that of rep-
resentativeness. Furthermore, complexity and lack of portability increase vendor
costs. Vendors will respond by passing the costs on to the user or by declining to
participate in the bid process, thus reducing competition. Maintaining a high
level of competition results in lower system costs and in innovative solutions to
problems.

Test Components and Methodology

To reach the above goals, appropriate test package components must be
selected. Candidate components include synthetic tests, generic tests, application
kernel tests, and complete codes, each of which supports the benchmarking goals
to some degree, and has its own advantages and disadvantages.

Synthetic benchmarks

Among the least representative benchmarks is the synthetic job, that is, “a
program which uses precisely specified amounts of computing resources, but
which does no ‘useful work’ ” (Kernighan and Hamilton 1973). Such jobs may
be constructed to replicate the CPU and I/O requirements of a real job without
regard to actual program features, or they may be constructed to represent a typi-
cal program written in a high-level language. If this latter approach is used, one
first obtains statistics that quantify how often particular language features (e.g.,
statement types, data types, types of operators) occur. Ideally, these should be
dynamic frequencies taken from program execution traces; when these are not
available, static information obtained by examining source programs may be sub-
stituted. The data so obtained are then used to construct a program that exhibits
the same frequencies of occurrence for all features of interest. Such a program
may accept an input parameter to vary its resource utilization, or the program
may be invoked within a loop to obtain a measurable amount of work. The
results may then be expressed in instructions executed per second or, if the pro-
gram is short enough, as program executions per second. Examples include the
Buchholz benchmark (Buchholz 1969), the Whetstone benchmark (Curnow and
Wichman 1976), and the Dhrystone benchmark (Weicker 1984, 1988). What
these synthetic tests lack in representativeness, they often make up for in scalabil-
ity and durability. They are generally quite portable and easy to use and provide
a close measure of a system’s peak performance.
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Generic tests

The classic example of this category, LINPACK, has already been mentioned.
For these types of benchmarks, usually a single problem is solved, such as a
matrix-vector or matrix-matrix multiplication. These tests perform types of cal-
culations similar to those found in many actual applications and may even use
publicly available codes or vendor-specific libraries. In many cases, the number
of floating-point operations or I/O operations is exactly known, and the rate of
computation or memory transfer can be measured. However, one must be careful
when quoting results from these types of tests, since, like synthetic tests, the cor-
relation to the performance of actual application codes may be small. (It is rare
to find an application with the same Mflop rate as LINPACK.)

Program kernels

A third methodology is the use of program kernels. To apply this technique
effectively, heavily used programs from the actual workload are analyzed to
determine what portions of the code use most of the computing time. These
resource-intensive portions, or kernels, are extracted and packaged into a bench-
mark test. Early examples included the Livermore Fortran Kernels, commonly
referred to as the “Livermore Loops’” (McMahon 1986), and the National Aero-
space Simulation (NAS) Kernel Benchmark Program (Bailey and Barton 1985).
More recently, the NAS Parallel Benchmarks (Bailey et al. 1991, 1994, 1995,
Saphir et al. 1996) have been developed to evaluate the performance of parallel
systems. These two benchmarks are examples of what will here be termed appli-
cation kernels because they contain code extracted from, or highly representative
of, actual application programs. It is also possible to use package kernels, *‘off-
the-shelf”” subroutines from software packages such as LINPACK, LAPACK,
ScaLAPACK, and FFTPACK, that form the computational core of many user
applications. The definition of a kernel is inherently vague, although it intuitively
seems to imply a small amount of code; as the amount of representative code
extracted becomes larger, the kernel may be more appropriately termed a “mini-
application.” Although kernel benchmarks may be small and portable, their
major disadvantages include the possibly significant work required to identify
and extract them from a large application code and the problem of verifying that
the kernel actually models the performance of the original code.

Actual programs

A final possible test component is an actual application program. Several
currently popular benchmarks use this methodology, including the PERFECT
(Cybenko 1990, Grassl and Schwarzmeier 1990, Saavedra-Barrera 1990) and
SLALOM benchmarks (Gustafson et al. 1990). A third example is the SPEC
benchmark suite (Henning 2000, Saavedra-Barrera 1990). The Systems Perfor-
mance Evaluation Cooperative (SPEC) consists of a group of vendors who have
agreed to use a standard test set to evaluate their systems. This set currently
includes 26 different actual programs, ranging from a C compiler to a seismic
wave propagation simulator, which exercise both the integer and floating-point
capabilities of a system. The SPEC suite is designed to test the performance of
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the CPU, memory hierarchy, and compiler. A performance ratio of the time on
the SUT relative to the known execution time on a reference machine (originally
a DEC VAX-11/780, currently a 300-MHz Sun Ultra-5/10) is calculated for each
of the 26 programs. The geometric mean of these ratios is the performance rating
(the “SPECmark”™) assigned to the SUT. The use of actual programs in this fash-
jon suffers from many of the same problems as the kernel approach, including
lack of representativeness due to a fixed workload, and possible lack of unifor-
mity due to vendor modifications. However, these disadvantages are often out-
weighed by the perception that these are “real codes.” Recently, SPEC has intro-
duced a new test suite, SPEC HPC2002, specifically designed to measure the per-
formance of HPC systems.

Methods for Running a Benchmark Test

The factor that generally serves to discriminate between benchmark tech-
niques is the method each one uses to achieve representativeness, not only of the
composition of the workload (as noted above), but also of the manner in which it
is imposed on the SUT. Are the test programs to be run serially or simultane-
ously? If serially, then will the SUT be dedicated to the test or will it be loaded
with other jobs? The answer to this last question depends on what is being mea-
sured. The dedicated serial test is intended to measure the best possible perfor-
mance of a given program on a system, while a serial test under typical load
should measure typical program performance.

If a stream of jobs is to be imposed on the SUT to measure system through-
put, then a decision regarding use of internal or external test drivers must be
made. This last decision is particularly crucial when a test package includes
interactive jobs; in such cases, remote terminal emulation is often used to exter-
nally drive the SUT. Fortunately, that was not the case for these tests; instead,
this benchmark test package contains dedicated synthetic tests, dedicated applica
tion tests, and internally driven throughput tests. :

Terminology and Conventions Used in This
Report
A report on subject matter such as this inevitably uses a variety of technical

jargon and acronyms; some of these are defined in Appendix A. The following
conventions’ are used in this report:

Bold is used for statements and functions, identifiers, and program
names.
Italic is used for file and directory names when they appear in the body

of a paragraph as well as for names of test cases that consist of

1 These conventions are reprinted with permission from sed & awk, 2nd ed. © 1997 O'Reilly As-
sociates, Inc (Dougherty and Robbins 1997). For orders and information call 800-998-9938.
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Constant
Width

Constant
Bold

(13 ”
Xy

[..]

multiple input files. It is also used for data types, for titles of
books and journals, and for emphasizing new terms and concepts
when they are introduced.

is used in examples to show the contents of files or the output
from commands.

is used in examples to show command lines and options that
should be typed literally by the user.

are used to identify a code fragment in explanatory text. System
messages, signs, symbols, and quotations from other sources are
quoted as well.

surrounds optional elements in a description of program syntax.
(The brackets themselves should never be typed, unless otherwise
noted.)

stands for text (usually computer output) that has been omitted for
clarity or to save space.
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2 Design of the Test Package

Consideration of the factors discussed in the first chapter, as well as guidance
from the HPCMP Office (HPCMPO), led the benchmark team to construct a
three-part test package. Synthetic tests were included to measure peak system
capabilities in a variety of areas: floating-point computation, memory transfer
rate, and 1/O performance, among others. These tests were constructed by Instru-
mental and are described elsewhere (Newman and Graham 2001). The second
test component consisted of application codes executed on an otherwise idle sys-
tem; these dedicated tests were intended to measure peak application perfor-
mance. The final test component was made up of two throughput tests intended
to represent production mode on a system. Other types of test components were
considered, and some, particularly kernels, had technical merit. However, given
the time constraints imposed on the team and the amount of money involved in
the TI-01 procurement, use of the above three components seemed to allow
timely construction of the test package and accurate sizing the prospective sys-
tems.

Perhaps the most crucial part of implementing the application portion of the
test package was the selection of the application codes. The initial step in this
process was a survey of users at all four DoD MSRCs. This was followed by a
second, more detailed survey designed to provide deeper insight into the codes
actually running on DoD HPC systems. Finally, a quantitative study of utiliza-
tion data from all the MSRCs provided valuable information to the creation of the
benchmark. A description of these data and their influence on the test package is
provided in the following sections. '

User Surveys

Credibility with the HPC community is an important feature of any HPC
benchmark test package. Two surveys of DoD HPC users were conducted by e-
mail to obtain user input for the design of the benchmark test package. This first
survey instrument is shown in Figure 1. Survey recipients included leaders of all
10 DoD CTAs, onsite CTA leaders at the MSRCs, all Challenge Project principal
investigators, as well as numerous other MSRC users. One hundred eighty-seven
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Dear colleague:

At the request of the HPCMO, the Computational Migration Group (CMG) is con-
structing a scalable benchmark package. In order to make this package representa-
tive of your CTA, we urgently need your input. This is important because this pack-
age may be used for purposes of future machine sizing and procurement. Please
help us out by answering a few questions. Each BT of a system will have two parts:

1. Generic performance tests designed to confirm vendor claims regarding peak
computational, communication, and 1/O performance, and

2. A series of tests using kernels representing each CTA. Ideally, each kernel
selected should be parallelized to run efficiently on all DoD parallel systems.

We need advice from you to ensure that the results of these BTs are useful both to
you and the HPCMO. We would be appreciative if you would address the following
items:

1. What is the computational technology area (CTA) of your project?

2. Do most of the codes in your CTA use MPI, OpenMP, SHMEM, or some other
programming interface (specify) to implement parallelism?

3. With respect to CPU time consumed, what types of computations characterize
the codes in your CTA (e.g., dense/sparse linear system solution, gridding,
flux calculations)?

4. With respect to overall time consumed, how do programs in your CTA spend
their time: computation, communication, or 1/0?

5. Are there any benchmark codes representative of your CTA that would be
applicable for purposes of system evaluation and/or selection (specify)?

6. Suggest one or more parallelized computational kernels that represent your
CTA; ideally, these should use MPI as the parallel programming interface and
should run on as many of the above systems as possible.

7. Suggest one or more parallelized codes that represent your CTA; ideally,
these should use MPI as the parallel programming interface and run on as
many of the above systems as possible.

8. Is there a preferred platform among users in your CTA (specify)?

9. Is system performance, ease of use, or some other criterion (specify) the over-
riding factor in selecting @ machine on which to run a code?

10. |f appropriate, suggest the names of other engineers/scientists who might pro-
vide additional insight into these issues. Please provide their e-mail
addresses if possible.

11. Make any other comments or suggestions you feel are appropriate to this
effort.

Thank you for your help in making this effort a success.

Figure 1. Phase 1 user survey example
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surveys were distributed. The responses of the 32 users who replied are summa-
rized below; multiple responses to some questions cause some response totals to
exceed 32.

a. CTA distribution. CCM: 7; CEA: 2; CEN: 1; CFD: 14; CSM: 3; CWO: 4;
EQM: 2; SIP: 1.

b. Parallel interface. MPI: 27, OpenMP: 6; SHMEM: 6; other: 5; PVM: 2;
threads: 2. Fourteen users mentioned only MPI, and two noted dual-level
MPI/OpenMP usage.

c. System preference. SGI Origin: 15; Cray T3E: 12; IBM SP: 9; Sun: 3;
Compagq: 1. No vector systems were mentioned.

d. Type of computation. Numerical linear algebra: 22; flux calculations: 10;
FFTs: 5; quadrature: 3; other: 3.

e. Component with significant time. The majority believed that computation
time dominated communication time and /O time; communication-bound
programs either were not used or had been rewritten to solve the problem.
Only six responses indicated that I/O was a significant part of their usage.

The users responding to this first survey were sent a second, more detailed
survey. Some of the questions in these second-round surveys were tailored to the
round one survey responses, resulting in differences between individual survey
instruments. An example round two survey instrument is shown in Figure 2.
Twenty users responded to this second survey; several important trends were evi-
dent from their responses.

a. Data type. Double: 13; real: 2; double complex: 2; complex: 1.

b. Source of software. Used own solvers, FFTs, etc.: 10; used off-the-shelf
software (e.g.; LAPACK): 7.

c¢. Dimensionality of problem. three-dimensional (3-D): 14; two-dimen-
sional (2-D): 7; one-dimensional (1-D): 1.

d. Discretization technique. Finite differences: 10; finite volumes: 5; finite
elements: 4.

e. Linear equation solver. lIterative: 15; direct: 3. A wide variety of itera-
tive solvers was mentioned, including conjugate gradient: 6; Gauss-Sei-
del: 2; multigrid: 2; SOR: 2; and Jacobi: 1.

f. Coefficient marrix. Matrix features varied widely. Block cyclic, block
diagonally dominant, block tridiagonal, dense nonsymmetric, diagonally
dominant, positive definite, positive definite Hermitian, sparse-almost
symmetric, sparse unstructured, sparse positive definite, symmetric, and
symmetric block pentadiagonal matrices were all mentioned.
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Dear colleague:
Thank you for your response to my earlier inquiry regarding construction of a benchmark
package for the HPCMO. We need clarification of some of your answers to make sure our
benchmark is representative.
1. Is the primary data type in your codes real, double precision, complex, and/or double
complex?
2. Do you use any "off-the-shelf" subroutine/subroutine libraries (e.g., LINPACK,
LAPACK, FFTPACK) or did you write your own?
3. Does your code(s) use a 1-D, 2-D, or 3-D grid to represent the problem?
4. Does your code(s) use finite differences? If yes, specify type, e.g., 2-D 5-point sten-
cils, 3-D 27-point stencils.

5. Does your code(s) use finite elements/volumes? If yes, specify type, e.g., piecewise
linear/planar, bicubic. Also specify what method, e.g., Galerkin.

6. How large are the linear systems?
7. Does the underlying matrix have any special properties, e.g., symmetric, band, block
diagonal, diagonally dominant, positive definite?
8. Do you use a direct method, e.g., Gaussian elimination, LU decomposition, Cholesky
factorization? If yes, specify method(s).
9. Do you use an iterative method, e.g., Gauss-Seidel, SOR, conjugate-gradient? If yes,
specify method(s).
10. Do you use some other hard-to-classify method, e.g., multigrid, frontal? If yes, specify
method(s).
11. s the linear system stored as a 2-D array, or in some other special format?

12. Could you provide us with a subroutine or code(s) to help us ascertain the nature of
the flux calculations?

13. Can you provide any additional information about the benchmarks/codes you men-
tioned (NA825, NAVDAS, COAMPS, NOGAPS)?

14. CGWAVE has been suggested by one of your colleagues as a candidate for kernel
extraction. Do you think this code could be used to represent CWO codes in general?

15. You have said that solving a linear system is a dominant computational task in your
code. Is this task in a loop (e.g., a time-step loop) as illustrated below?

DO N times
"before stuff"
solve linear system
"after stuff"

END DO

If yes, how large is N? What types of computations take place in "before stuff’ and
"after stuff’ (e.g., calculate matrix coefficients, flux calculations)? Can you character-
ize the nature of these other tasks or provide code to illustrate them? How much time
do they take relative to the linear system solution?

Thank you for your help in making this effort a success.

Figure 2. Phase 2 user survey example
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Use of Utilization Data

Perhaps the most important source of data for design of the test package was
utilization data for fiscal year 2000 from each of the MSRCs. A summary of
MSRC system usage by CTA is shown in Tables 1 and 2; these data were used to
identify the CTAs having the highest system utilization, and, as discussed later, to
construct job mixes for the throughput tests.

Code usage across all of the MSRCs constituted another important source of
workload data; Table 1 shows this usage data for codes using the most CPU hours
across all four MSRCs. This table was compiled by using job accounting data
from all of the MSRCs to identify the top users at each site, and then personally
contacting them to determine which code they were running. If a user specified

Table 1 _

MSRC System Utilization in CPU Hours by CTA

CTA ARL ASC ERDC NAVO Average
cCcM 509,545 | 1,629,514 | 1,029,695 | 666,939 958,923
CEA 500,116 | 655,189 | 805,602 25,297 | 496,551
CEN 1,000 | 155,075 14,414 | 455,766 156,563
CFD 756,076 | 1,855,451 | 1,397,502 | 1,594,749 | 1,400,944
CSM 1,185,228 | 209,768 | 1,534,787 21,174 737,739
CcCWOo 20,004 34 | 559,330 | 1,842,061 605,357
EQM 0 0| 391474 4,269 98,935
FMS 20,580 46,207 1,799 0 17,146
IMT 49,021 0 0 0 12,255
SIP 54,250 96,020 6,749 1,161 39,545
Other 63,055 0| 100854 425 41,083
Total | 3,158,875 | 4,647,258 | 5,842,210 | 4,611,844 | 4,565,045

Table 2

Percent MSRC System Utilization by CTA

CTA ARL ASC ERDC | NAVO | Average
ccM 16.1 35.1 17.6 14.5 20.8
CEA 15.8 14.1 13.8 0.5 1.1
CEN 0.0 3.3 0.2 9.9 3.4
CFD 23.9 39.9 23.9 34.6 30.6
CSM 37.5 45 26.3 0.5 17.2
cwo 0.6 0.0 9.6 39.9 12.5
EQM 0.0 0.0 6.7 0.1 1.7
FMS 0.7 1.0 0.0 0.0 0.4
IMT 16 0.0 0.0 0.0 0.4
(]2 1.7 2.1 0.1 0.0 1.0
Other 2.0 0.0 1.7 0.0 0.9
Total 100.0 100.0 100.0 100.0 100.0
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two or more codes and did not give an estimate of the percent usage of each, then
equal distribution of CPU hours among the codes was assumed. CPU hours on
different systems are not necessarily equivalent due to differences in clock rate,
processor architecture, compiler optimization, and other factors; this is not taken
into account in these rankings. The Cray T3Es at ERDC and NAVO have large
numbers of CPUs, so codes that run on those machines tend to be at the top of the
list. Lastly, Cray vector machines at NAVO have powerful CPUs, but fewer of
them, so codes that run only on those machines have much fewer CPU hours and
do not appear in the table.

Selection of codes for inclusion in the test package proceeded in a systematic
fashion. Beginning at the top of the ranking shown in Table 3, the following cri-
teria were used to determine whether a candidate code was included in the test

package:
Table 3
Code Ranking by CPU Hours Used
Code CTA Type Usage
CTH CSM MPI 2,069,998
NLOM CWO MPI 1,869,755
Cobaltg, CFD MP] 989,124
GAMESS CCM MPI 514,070
Code A CEN MPI 434,559
LESLIE3D CFD MPI 404,308
Code B CCMm MPI 371,848
NFA CFD HPF 363,367
Code C CCM MPI 327,194
Code D CEA SHMEM 319,867
Code E CFD SHMEM 315,745
Code F CSM SHMEM 303,374
Code G CCM MPI 287,858
MICOM CWO MPI 262,602
ICEPIC CEA MPI 259,937
VASP CCM MPI 215,086
GASP CFD OpenMP 199,864
Code H CFD Unknown 195,816
Code | CFD MP] 176,035
FEMD CCM MPI 170,751
USM3D CFD MPI 168,515
CHARGE CEA MPI 168,340
CRAFT CFD MPI 144,922
Gaussian CCM OpenMP 140,464
Code J CCM Unknown 118,212
Code K CFD | Unknown 108,474
EIGER CEA MPI 101,328
Code L CFD SHMEM 04,648
MD-Multiscale CEN MPI 88,527
Code M CFD MPI 85,536
Code N CFD MPI 82,909
Code O CEA MPI 81,071
COAMPS CWO MPI 59,713
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a. Does the code use MPI or OpenMP? One or the other of these parallel
programming interfaces was required so that all prospective vendors
could run the code; this ruled out codes that used only the Shared Mem-
ory (SHMEM) one-sided communication library and codes designed for
best performance on vector processors.

b. Does the code represent a CTA not already well represented in the test
package? The goal was to have two codes for each of the top seven
CTAs.

c. Does the code represent an MSRC not already well represented in the test
package? The goal was to have at least two codes representing each
MSRC.

d. I the code readily obrainable? Commercial codes requiring a fee and
those that the developers were unable to release were discarded.

e. Is the code portable? If after a few days of effort it was not possible to
get the code to execute on systems from two different vendors, then the
code was discarded.

The final list of codes selected from this list for inclusion in the test package
included the top code at each MSRC supplemented by others that satisfied the
above constraints (see Table 4). Remarkably, a total of 6,634,810 CPU hours, or
36.3 percent, may be attributed to only nine codes: CHARGE, Cobaltgy, CTH,
FEMD, GAMESS, ICEPIC, LESLIE3D, MD-Multiscale, and NLOM. For
special reasons, four other codes were included for which no data was available:
FEMWATER123 to represent EQM, PRONTO to provide a second representa-
tive of CSM, SARA-3D because of its high I/O requirements, and UNCLE to
represent CFD usage at ARL. A brief description of each code is provided in the
next chapter.

Table 4

Characteristics of Benchmark Application Codes

Application Language Parallel Method CTA CHSSI
CHARGE C MPI CEA No
Cobaltg, f90 MPI CFD Yes
CTH f77/C MPI/PVM CSM | Yes
FEMD fr7 MPI CCM No
FEMWATER123 f77 MPI EQM Yes
GAMESS f77 MPI/SHMEM CCM | Yes
ICEPIC f77 MPI CEA Yes
LESLIE3D £77/f90 MP1/OpenMP CFD No
MD-Multiscale C/f90 MPI CEN No
NLOM f77 MPl/OpenMP/SHMEM | CWO | Yes
PRONTO f77/f90/C MPI CSM No
SARA-3D f77/C MP1/OpenMP CEA No
UNCLE f90 MPI CFD No
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3 Dedicated Run Results

As mentioned in the first chapter, a “dedicated” test is one in which the entire
resources of a system are dedicated to running a single job. While it may seem
wasteful, for instance, to empty a 256-processor system to run a job requiring
only 64 processors, it is valuable to do so because it provides a measure of the
best possible performance one could expect from the system for that job. This
approach is useful in order to quantify the overhead penalty paid when using the
machine in production mode, i.e., any competition with other jobs for memory or
communication bandwidth is eliminated. To participate in the TI-01 procurement
process, vendors were required to run the tests described in this chapter in dedi-
cated mode. To prepare and validate the test package, the benchmark design
team ran many, but not all, of these tests in that same dedicated mode. This chap-
ter describes the results of the team’s efforts.

The 13 application codes noted in the previous chapter were run on one sytem
at the ASC MSRC, three at the ERDC MSRC, and one at the NAVO MSRC; the
first section in this chapter describes these systems. For many of the codes, more
than one set of input data was used; a code with a single set of input data is
herein termed a “test case.” All of the test cases were executed using different
numbers of processors, and walltimes were recorded. To better understand the
significance of these data, various performance metrics were computed; these are
described in the second section of this chapter. Following that, there is a section
for each application that discusses the code, the input data used to test the code,
the times, and the associated scores. Appendix B discusses technical issues
encountered while preparing the various codes for inclusion in the test package.

Systems Tested

The five SUTs are described in Table 5. The short names listed in this table
will be used to refer to the various SUTs. When there is no possibility of confu-
sion, these short names will also be used to refer to the particular system model
of interest (e.g., the name “O3K” may refer to the particular SUT installed at
ERDC, or to the entire class of Origin 3000 systems, depending on the context).
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Table 5
Characteristics of SUTs
Cray 1BM IBM SGl SGI
System T3E sP2 SP3 02K 03K
Name seymour osprey cobalt hpc03-5 sard
Site NAVO ERDC ERDC ASC ERDC
Model T3E-900 SP Nighthawk | Crigin 2800 Origin 3800
CPUs 1048 255 512 128 256
CPUs/Node 1 1 8 2 4
Processor Alpha RS/6000 RS/6000 MIPS MIPS
21164 POWER2SC POWER3 R10000 R12000
Clock Rate 450 MHz 135 MHz 222 MHz 195 MHz 400 MHz
Level 1 8 KB, 32 KB, 32 KB, 32 KB, 32 KB,
|-Cache on-chip, on-chip, on-chip, on-chip, on-chip,
direct 2-way 128-way 2-way 2-way
mapped set assoc. set assoc. set assoc. set assoc.
Level 1 8 KB, 128 KB, 64 KB, 32 KB, 32 KB,
D-Cache on-chip, on-chip, on-chip, on-chip, on-chip,
direct 4-way 128-way 2-way 2-way
mapped set assc. set assoc. set assoc. set assoc.
Level 2 96 KB, none 4 MB, 4 MB, 8 MB,
Cache on-chip, external, external, external,
3-way direct 2-way 2-way
set assoc. mapped set assoc. set assoc.
Total Memory | 384 GB 256 GB 256 GB 64 GB 512 GB
Total Disk 1.51 7B 0578 1.7 TB 178 6.02TB
Space Mirrored RAID RAID RAID RAID
Opetrating UNICOSMK AIX AIX IRIX IRIX
System 2.0.5.47 3.4 3.4 6.5 6.5
Batch NQE Open PBS PBS Pro Open PBS PBS Pro
Scheduler 33 23 5.0.1 2.3 5.0.1
Fortran Cray CF90 xIf xif MIPSpro MIPSpro
Compiler 3.3.00 7.1.0.0 7.1.0.0 7.3.1.1m 7.3.1.1m
Cc Cray C xlc xlc MIPSpro MIPSpro
Compiler 6.3.0.0 3.1.4.10 3.1.4.10 7.3.1.1m 7.3.1.1m
Math Craylibs ESSL ESSL SCSL SCSL
Library 3.3.00 3.1.2.0 3.1.20 1.3.0.0 1.3.0.0
MPI MPT PSSP PSSP MPT MPT
Library 1.21.2 3.1 3.1 1.4 1.4.0.2
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Interesting features of and special circumstances related to each of these systems
will be discussed in turn.

The Cray T3E-900 used in these tests, referred to as the “T3E,” is installed at
the NAVO MSRC.! The 1,048 CPUs in the T3E are connected in a 3-D toroidal
mesh. Each node in the T3E is based on a single 450-MHz DEC Alpha micro-
processor and is capable of 2 flop/cycle (multiplies or adds), giving a peak rate of
900 Mflop/s per node. Memory on the T3E is distributed; furthermore, this T3E
is configured so that 488 CPUs have 512 MB of memory each and 560 CPUs
have 256 MB of memory each. System software uses 10 MB of memory on each
CPU, reducing the amount available to a user, and 24 of the CPUs are “login”
nodes unavailable for batch usage. As with the jobs on the other four systems, a
batch queuing system was used to submit all of the jobs on the T3E; no jobs were
run interactively.

The first IBM SP used in these tests is installed at the ERDC MSRC. The
255 nodes of this SP communicate via a packet switched interconnect; 249 of
these are compute nodes available for running batch jobs. Each node in this sys-
tem contains one CPU, a 135-MHz IBM RS/6000 POWER2 Super Chip
(POWER2SC). Because it is an IBM SP equipped with POWER2SC CPUs, this
system will be consistently referred to as the “SP2.” The POWER2SC is a sin-
gle-chip implementation of the POWER?2 architecture that allows higher clock
rates than its multichip predecessors. Like all members of the POWER2 and
POWER3 families, the POWER2SC has a fused multiply-and-add (FMA)
instruction. Each of the floating-point units on the POWER2SC is capable of
completing one FMA instruction per cycle, giving it a peak rate of 540 Mflop/s.
Memory is distributed on the SP2, and nodes have varying amounts of memory:
99 of the compute nodes have 512 MB of local memory, 97 have 1 GB, and 53
have 2 GB. During these tests, six nodes were dedicated to other purposes, leav-
ing 249 nodes available for running batch jobs.

The second IBM system also has the SP architecture and is also installed at
the ERDC MSRC. Each of the 64 nodes in this system is an 8-way symmetric
multiprocessor (SMP) with 4 GB of shared memory. Each of the eight CPUs in a
node is a POWER3 microprocessor running at 222 MHz. Because of this feature,
this system is referred to as the “SP3.”” Just like the SP above, each CPU can
execute two FMA instructions per cycle, giving a peak rate of 888 Mflop/s. The
tests reported here were run before the installation of IBM’s newest generation
interconnect, the Switch2. Because of this, only four processors per node were
available to MPI processes. Processes using threads could use all eight, but only
two test codes, NLOM and SARA-3D, had this capability. Since the conclusion
of these tests, the Switch2 has been installed on the SP3; an analysis of the pre-
and post-Switch2 SP3 performance on several of the benchmark applications is
presented in a separate report (Duffy et al. 2001).

The last two systems used in these tests were SGI Origin systems. The first is
a 128-processor Origin 2800, an “O2K,” installed at the ASC MSRC. The

! This system was moved to the ERDC MSRC in 2002 and combined with an already-installed
T3E. The resulting system, the largest known T3E in the world, is shown on the cover.
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second system is an Origin 3800, or “O3K,” installed at the ERDC MSRC. At
the time of these tests, the O3K was configured as two separate identical
256-CPU system images; these have since been merged into a single 512-CPU
system. No distinction is made here between jobs run on the two O3K systems.
The 02K and the O3K use 195-MHz MIPS R10000 and 400-MHz R12000
microprocessors, respectively. Both are capable of two floating-point operations
per cycle, yielding respective per CPU rates of 390 and 800 Mflop/s. The Origin
interconnect is a so-called “bristly hypercube,” with two CPUs attached to a ver-
tex on the O2K and with four on the O3K. Unlike the other systems reported
here, the Origins use cache-coherent nonuniform memory access (ccNUMA)
technology to provide a globally shared memory space to all of the processors.

Not all of the tests required of the vendors were run as part of these tests. In
some cases, the SUT did not have a sufficient number of processors to perform a
particular run, and, in other cases, limited local memory on some processors pre-
vented the execution of some of the test cases. Such situations are denoted by
blank entries in the tables.

To perform the tests reported here, exclusive access to the first four systems
noted above was obtained so that jobs could run in dedicated mode. For various
reasons, some jobs running during these test periods terminated abnormally or
failed to complete within the dedicated time and ended up competing with other
jobs. Because there was limited time for exclusive access, it was not possible to
run or rerun some of the jobs in dedicated mode; to fill the gaps in the data, runs
in nondedicated mode were used. No distinction is made here between times col-
lected in dedicated mode and those collected in nondedicated mode. Further-
more, at the time of these tests, the O3K was in the shakedown phase of its instal-
lation; the system was available to “pioneer” users and it was not possible to
obtain exclusive access to the system for dedicated test jobs. In spite of this, the
second system image was often idle and de facto dedicated time was obtained for
many of the tests.

Generally, MPI was the parallel programming interface used by all codes;
however, there were several exceptions. The implementations of GAMESS and
NLOM on the T3E used SHMEM. As noted earlier, SARA-3D uses MPI and
threads to implement parallelism; this capability was used on the SP3 and the
Origins.

Performance Metrics

The primary performance metric gathered for each run of a test case is “wall-
time;” that is, the elapsed time from when job execution begins until it ends.
This does not include time spent waiting in a queue to execute. Furthermore, this
is not the same as “CPU time,” which measures the time consumed by the pro-
cessor running the job. Rather, walltime is the time a job runs as recorded by a
user watching an external clock; consequently, this is sometimes termed “wall-
clock time.” For jobs running on a single CPU, CPU time is always less than or
equal to walltime, the difference between the two times being the result of time
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spent waiting for temporarily unavailable system resources or performing system
overhead tasks. When a job is run in dedicated mode, it is presumed that this dif-
ference will be at a minimum since there is no competition for system resources
from another user’s job.

For each run performed the elapsed walltime in seconds was recorded,; tables,
one for each code, present these data. As an aid in comparing systems, the O3K
was used as a reference system and the performance relative to the O3K was
computed. Specifically, if Ty is the time for some test case on system X and
Tosx is the time for that same run on the O3K, then the relative performance of
system X is Py = Tp3x/Tx. For example, if T3k is 50 sec and Ty is 100 sec,
then Py is 0.5, indicating that X has half the performance of the O3K. Obvi-
ously, this measure will vary depending on the code, input data, number of CPUs
used, and other factors.

After this performance metric was computed for each observed walltime, a
-summary average performance was computed for each system by code. Those
code averages were then averaged to produce an overall average performance for
each system. Unweighted averages were used at each step. Further information
on combining performance measures has been described by Hennessy and Patter-
son (1996).

CHARGE

Code description

CHARGE calculates the radar cross section (RCS) of complex scatterers
using a finite-volume electromagnetics approach. The spatial discretization is a
third-order, cell-centered Van-Leer splitting, while a second-order Runge-Kutta
scheme is used for integration over time. Solving for an RCS using CHARGE
requires six steps, generally performed in a single directory and each requiring a
separate executable file. These steps are discussed below.

The first step uses the GRIDGEN program to define the input grid. Unlike
the programs that follow, GRIDGEN is not a part of the CHARGE package, and
it was not executed as part of the tests reported here. Next, patchtrans converts
the GRIDGEN output file into a binary “patch” file, parch.dat, defining the
boundary conditions for the problem.

In the third step, mzconvert restructures the grid data for effective paral-
lelization. Its input consists of parch.dat, at least one ““.grd” grid file in
PLOT3D format, and a user-supplied file, inputmzc.dat. This last file allows the
user to specify, among other things, the names of the input and output files. Out-
put of this step is grid.dat, which is input for the next step, and rcscells and surf-
cells, which are input to the CHARGE step.

Running mydecomp is the fourth step. Using grid.dat from the previous step
and the user-specified file inputmyd.dat, it partitions the domain among the pro-
cessors. The output files are cell.map, parallelgrid.dat, and parallelinterp.dat.
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The next step, CHARGE, is the heart of the calculation. It solves Maxwell’s
equations and calculates the RCS using an FFT approach. It requires rescells,
surfcells, cellmap, parallelgrid.dat, solverinput.dat, and driverinput.dat as input.
Output files contain bistatic RCS data at 0.5° intervals.

The last step, gridinterp, is a post-processing step to facilitate visualization
of the output. It was not a part of these tests.

CHARGE is written entircly in C and consists of 16,605 lines of code
(LOC); the charge step itself is 6,950 LOC. The formats of the various input files
are described in the user’s manual (CHARGE Development Team 1999). All of
above steps except for the CHARGE step execute serially.

Performance

The input data used for this test case specify a calculation of the RCS of a
sphere. The three 500.dd input files differ in the number of periods used; for
these, the maximum number of steps is given by the digits dd. Thus, for 500.25,
a maximum of 25 time-steps is specified, even though the computation converges
after 16. Six 59 x 19 x 19 subgrids are used.

Walltimes for the CHARGE test cases are provided in Table 6. CHARGE'’s
performance scales well with the number of processors, particularly on the T3E
and the SGI systems. The reduction in scalability at higher processor counts on
the Origin systems indicates that the serial part of the code is becoming an
increasingly significant fraction of the work. Performance relative to the O3K is
given in Table 7; the O3K outperforms the next fastest system, the O2K, by
almost a factor of 2.

Table 6

CHARGE Walltimes in Seconds on Various Systems
Cray IBM IBM SaGl SGI
Test Case CPUs T3E SP2 SP3 02K 03K
500.03 2 5725 7638 5965 4808 2629
4 2931 4038 2999 2429 1437
500.05 64 437 1220 524 328 202
500.25 8 7659 10252 7962 6352 2918
16 3066 5597 4401 3246 1476
32 2072 3176 2285 1659 817
64 1138 2265 1502 907 490
128 665 1385 873 703 330
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Table 7 _
CHARGE Performance Relative to the O3K

Cray IBM IBM SGl SaGl

Test Case CPUs T3E SP2 SP3 02K 03K

500.03 2 0.46 0.34 0.44 0.55 1.00

4 0.49 0.36 0.48 0.59 1.00

500.05 64 0.46 0.17 0.39 0.62 1.00

500.25 8 0.38 0.28 0.37 0.46 1.00

16 0.37 0.26 0.34 0.45 1.00

32 0.39 0.26 0.36 0.49 1.00

64 043 | 022 0.33 0.54 1.00

128 0.50 0.24 0.38 0.47 1.00

Average 0.44 0.27 0.38 0.52 1.00
CObaltso

Code description

Cobaltg is a parallel, implicit computational fluid dynamics (CFD) code that
solves the compressible Euler and Navier-Stokes equations subject to the ideal
gas equation of state (Computational Sciences Branch, Aeronautical Sciences
Division, Air Vehicles Directorate 1999). Two-dimensional, 3-D, and axisym-
metric spaces can be modeled. Unstructured grids with arbitrary cell types are
permitted. The developers’ goal was to make Cobaltg, as general, flexible,
robust, accurate, and easy to use as possible.

The fundamental algorithm of Cobaltgg is conceptually based on the exact
Riemann solver of Godunov, a finite-volume, cell-centered method that is first-
order accurate in both space and time (Godunov 1959, Holt 1996). However, in
practice, Godunov’s exact Riemann solver is very expensive, so the method of
Gottlieb and Groth is employed (Gottlieb and Groth 1988, Strang 2000). Sec-
ond-order accuracy in space is patterned after van Leer’s monotone upwind
scheme for scalar conservation laws (MUSCL) where the flow state is assumed to
vary linearly within each cell (van Leer 1979). The linear variations (gradients)
are constructed by a central-difference, least-squares method that, in turn, is
solved by QR factorization.! In cells requiring limiting, the gradients are cor-
rected to give a one-sided least-squares scheme. First- and second-order tempo-
ral accuracy is achieved via the unconditionally stable point-implicit scheme as
implemented by Tomaro, Strang, and Sankar. Second-order accurate viscous
terms, loosely patterned after the work of MacCormack (MacCormack 1969), are

1 OR is not an acronym; instead, it refers to the factorization of a matrix A into the matrix product
of O times R (QR) where  is orthogonal and R is upper triangular. The QR algorithm is used to
determine the eigenvalues of the matrix A.
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added to the above inviscid algorithm to yield a Navier-Stokes solver.

The temporal accuracy of the viscous terms is equivalent to that of the invis-
cid terms. The Spalart-Allmaras (Spalart and Allmaras 1992) and the Baldwin-
Barth (Baldwin and Barth 1991) turbulence models are available to model the
fine-scale effects of turbulence. The turbulence models are first-order accurate in
space with temporal accuracy determined by the above point-implicit method.
Lastly, much effort was devoted to boundary conditions to achieve high accuracy
with robustness and flexibility.

The model grid may be composed of cells of arbitrary type (tetrahedra,
quadrilaterals, pyramids, triangles, etc.). Different cell types are permitted within
the same grid. The set of boundaries forming each cell, called faces, may also be
arbitrary (triangles, pentagons, lines, etc.), though each cell boundary face should
be convex. The grid is decomposed into subdomains called groups, blocks, or
zones, permitting parallel processing where each zone resides on a separate pro-
cessor. This is accomplished using ParMETIS, the MPI-based, parallel grid-par-
titioning library that performs both static and dynamic graph partitioning and fill-
reducing reordering (Karypis 2000, Karypis and Kumar 1995, Karypis and
Kumar 1998). It partitions a multidimensional grid among a set of processors,
ordering the grid points so that the amount of fill-in during direct solution of the
resulting linear system is reduced. ParMETIS is highly portable and easy to
install on a variety of platforms. Additionally, ParMETIS produces roughly
equally sized zones, which produces good load balancing, and each zone has a
minimized “surface area,” thus reducing communications overhead. Conse-
quently, Cobaltgy’s excellent scalability may be attributed to two characteristics:
good load balancing with minimal communications overhead attributable to
ParMETIS, and high computational intensity requiring little communication.

Development of Cobaltg, began in 1990 at the Air Force Research Labora-
tory (AFRL), Aeronautical Sciences Division, Computational Sciences Branch,
with the three major developers being William Strang, Robert Tomaro, and
Matthew Grismer. Cobalty is a project under the CFD CTA of the HPFCMPO’s
Common High Performance Computing Software Support Initiative (CHSSI) and
can only be distributed to U.S. citizens. '

Cobaltgy is written in Fortran 90 and uses only MPI to achieve parallelism.
Hence, Cobalt is quite portable and has been successfully installed on IBM
SPs, T3Es, Origins, Cray parallel vector processors, HP C240/C360 clusters, HP
K460s, DEC AS8400s, and Linux-based systems (using the Portland Group’s
compilers).

Cobalt is often used to model fluid flow and turbulence around objects
moving through a fluid (e.g., missiles and jets traveling through the air). The
number of cells in a model typically ranges from several hundred thousand to ten
million, while the number of processors used ranges from tens to hundreds,
depending on the size of the mesh.
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Performance

Three cases of increasing size werc run with Cobaltgy. Missile modeled a
finned missile flying at Mach 2.5 and 14° angle of attack with 728,109 cells;
wingflap modeled a wind tunnel model of a wing with a flap and endplates with
2,976,066 cells; and trap-wing modeled a body/wing/flap/slat configuration at
10° angle of attack with 7,009,212 cells. All cases were 3-D and modeled turbu-
lent viscous flow over the geometries. The walltimes and relative performance
for these cases are shown in Tables 8 and 9, respectively.

Table 8
Cobaltg, Walltimes in Seconds on Various Systems
Cray IBM IBM el SGl
Test Case CPUs T3E sP2 SP3 02K 03K
missile 16 5060 5294 2565
32 2577 2650 1632 2204 1901
64 1370 1274 776 1009 886
128 808 686 536
wingflap 16 9471 8334 3664
32 4831 4671 2760 4420 1733
64 2643 2248 1343 2882 883
128 1523 1004 533
trap_wing 32 8234 6856 4016 7481 2859
64 4483 3854 2150 3166 1840
128 2682 1225
256 1784 817
Table 9
Cobaltg, Performance Relative to the 03K
Cray IBM IBM SGl SGI
Test Case - | cPuUs T3E SP2 SP3 02K 03K
missile 16 0.51 0.48 1.00
32 0.74 0.72 1.16 0.86 1.00
64 0.65 0.70 1.14 0.88 1.00
128 0.66 | o.78 1.00
wingflap 16 0.39 0.44 1.00
32 0.36 0.37 0.63 0.39 1.00
64 0.33 0.39 0.66 0.31 1.00
128 0.35 0.53 1.00
trap_wing 32 0.35 0.42 0.71 0.38 1.00
64 0.41 0.48 0.86 0.58 1.00
128 0.46 1.00
256 0.46 1.00
Average 0.47 0.51 0.86 0.56 1.00
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For the missile test case, all systems except the O3K show a superlinear
speedup. Presumably, this is due to the size of the problem and how it fits into
the various levels of cache on the different chips. On the O3K, the problem fits
into the second-level cache and shows a more representative speedup for this
problem size. However, the wingflap and trap-wing models are larger and do not
fit into cache except perhaps for runs with larger numbers of processors. Even
so, the T3E shows the best speedup efficiency, though it takes the longest amount
of walltime. All of the platforms perform well for the small missile test case.
However, the performance drops dramatically for the larger test cases, with the
03K maintaining a high level of performance.

CTH

Code description

CTH! was developed by Sandia National Laboratories (SNL) for modeling
complex multidimensional and multimaterial simulations involving large defor-
mations and/or strong shock physics (Sandia National Laboratories 1998, Hertel
et al. 1993, McGlaun et al. 1990). Hence, problems including penetration and
perforation, compression, detonations, etc., can be explored with the collection of
six codes that make up the CTH software package. These six components
include the following:

a. CTHGEN sets up the initial configuration of the problem, including load
balancing for parallel architectures.

b. CTHREZ rezones a problem or combines multiple problems.
¢. CTH computes the time integration and conservation equations.

d. CTHED controls queries to the problem database for detailed informa-
tion at the cell level. :

e. CTHPLT produces graphics at a given time during the computation.
f HISPLT produces graphics for user-defined variables as a function of
time.

Over the past decade, CTH has become one of the most heavily used applica-
tions in the DoD research community and has been included in several prior DoD
HPC benchmarks. Although it is export-controlled, its high utilization and porta-
bility plus being a CHSSI code made its inclusion in the test package imperative.

1 «CTH” is an acronym of an acronym of an acronym; it stands for “CSQ to the Three-Halves.”
«“CSQ” stands for “CHARTD SQuared.” “CHARTD” stands for “Computational Hydrodynam-
ics And Radiative Thermal Diffusion.” CHARTD, CSQ, and CTH are 1-D, 2-D, and 3-D codes,
respectively. Thanks to David Crawford of Sandia National Laboratories for supplying this crucial
piece of information.
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The CTH99 distribution contained instructions for installation on a variety of
platforms. CTH is highly portable and can be built to run on a single processor
or with multiple processors utilizing PVM, MPI, or NX message passing. CTH
has been ported to and tested on numerous platforms under a variety of operating
systems and programmatic interfaces, including the Cray T3E, IBM SP, SGI
R10000 and R12000, SUN SPARC, and Intel Paragon. Only the MPI version of
CTH was used for these tests. Furthermore, of the six components in the CTH
distribution, only CTHGEN and CTH were used. CTH is also very scalable,
making it a good candidate for testing the scalability limits of recently introduced
parallel systems. Current usage of CTH varies greatly, with typical models using
up to 512 CPUs.

Performance

Table 10 summarizes the test cases used for CTH by showing the number of
cells in each dimension (N,, N,, N_), the length of time simulated in the model,
and the range of processors on which vendors were required to run. Vendors
were allowed to supplement this list with runs using larger numbers of CPUs in
order to demonstrate system scalability. The simulation time for test case
mpi-032 was reduced so that it could be easily included in the throughput tests.

The goal of having this many test cases was to exercise various paths through
the code. Obviously not all paths could be exercised; otherwise, the number of
test cases would have been quite large. Instead, representative inputs were
obtained from DoD CTH users. Problems tackled with CTH by DoD users are
growing in size. Fortuitously, some of these test cases are quite large and so are
representative in that respect as well. For instance, the arm.t1.in test case may
require as much as 20 GB of memory to execute.

Timings on five different machines are shown in Table 11, and system perfor-
mance relative to the O3K is given in Table 12. Only the T3E was able to run the

Table 10
Characteristics of CTH Test Cases

Simulated | Recommended
Test Case Ny Ny N; Time Nos. of CPUs Remarks
arm.tl.in 1580 500 40 10.0e-6 64, 96, 128, 256 From work at ERDC
efp3d.s1.in 80 80 80 50.0e-6 32, 48,64 From the SNL distri-
efp3d.s2.in 80 80 40 50.0e-6 32, 48,64 bution of CTH
mpi_001.in 215 30 60 40.0e-6 1,2,4,8
mpi_002.in 271 38 75 40.0e-6 2,4,8 Created at ARL to
mpi_004.in 341 48 95 40.0e-6 4,8, 16,32,64 scale the size of the
mpi_008.in 430 60 120 40.0e-6 8 problem along with
mpi_016.in 540 76 151 40.0e-6 16 the number of CPUs
mpi_032.in 683 95 191 0.5¢-6 16, 32,64
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Table 11
CTH Walltimes in Seconds on Various Systems

Cray IBM IBM SG! SGl
Test Case CPUs T3E SP2 SP3 02K 03K
arm.t1 64 5903 2516 4195 2034

80 3518 4667 2123 3488 1718
96 2975 4020 1864 3063 1498
128 2237 3051 1450 2745 1248

256 1218 1582
512 688
mpi_032 16 4853 5542 2371 4169 1914
32 2447 2687 1331 1113
64 1437 1905 877 679
128 811 998 544 467
256 492 639
512 305

Table 12
CTH Performance Relative to the O3K
Cray IBM IBM SGl SGl
Test Case CPUs T3E SP2 SP3 02K 03K
arm.t1 64 0.34 0.81 0.48 1.00
80 0.49 0.37 0.81 0.49 1.00
96 0.50 0.37 0.80 0.49 1.00
128 0.56 0.41 0.86 0.45 1.00
256 1.30 1.00
512
mpi_032 16 0.39 0.35 0.81 0.46 1.00
32 0.45 0.41 0.84 1.00
64 0.47 0.36 0.77 1.00
128 0.58 0.47 0.86 1.00
256 1.30 1.00
512
Average 0.67 0.38 0.82 0.48 1.00

test cases with more than 256 processors. Large CTH test cases scale well, and
the arm.t1.in input is no exception. Typical efficiencies for 64- and 128-proces-
sor runs range between 80 and 96 percent, with the T3E scaling at nearly 100
percent for large processor counts. The increase in the time for the 256-processor
run relative to the 128-processor run on the O3K is presumably caused by
resource contention between CTH and operating system processes.

The performance of the O2K relative to the O3K (0.48) is almost exactly
what would be expected from the improvement in clock speed (195MHz /
400 MHz = 0.4875) (Hensley et al. 2001). This is not the case for the SP3 (0.82
versus 222 MHz / 400 MHz = 0.555), indicating that differences in architecture of
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the CPU and interconnect are responsible for the additional performance. The
scaling of the O3K is not ideal. It seems that the speed and efficiency of the O3K
CPUs have increased to the point that the overhead time of initializing MPI, dis-
tributing the grid, reading in the input, etc., has become a significant portion of
the total time of the run. This phenomenon seems most apparent for jobs with
large numbers of CPUs and short run times.

FEMD

Code description

As technology advances, the need for materials with specific structural prop-
erties has increased dramatically. As an example, ceramics are highly desirable
materials for applications requiring extreme operating conditions (i.e., high/low
temperatures and pressures). Recent discoveries have resulted in ceramics that
are much more ductile, opening up a larger number of applications to which
ceramic materials may apply. Even with the extensive research being conducted,
fundamental questions at the atomic level are still unanswered. Specifically, the
understanding of the ceramic/metal interface is elusive (Kalia et al. 1999).

Calculations used to study such problems are extremely large scale and are
based on first-principle methods. FEMD is a parallel pseudo-potential plane
wave program used to make just such calculations. It is based on a precondi-
tioned Krylov-space iterative Lanczos-method diagonalization procedure, which
is an extension of an earlier Car-Parrinello molecular dynamics code developed at
Queen’s University, Belfast (Alavi et al. 1994).

Simulations on the order of hundreds of atoms are commonly performed. In
order to treat such large systems, it was necessary to parallelize Fortran code
using MPL. By exploiting the highly parallel architectures, a real space mesh of
108 x 108 x 108 and 1,300 electron orbitals are expanded in about 90,000 plane
waves. For problems of this size, 128 or more processors are generally used.
Examples of the research performed using FEMD are available in Benedek,
Minkoff, and Wang (1996), Benedek et al. (1999), and Benedek et al (2000).

FEMD is written in Fortran but contains C preprocessor directives that tailor
the source code to a variety of platforms as well as make the resulting executable
serial or parallel. FEMD uses the LAPACK library.

Performance

Two test cases were used for the FEMD tests. Both performed a calculation
involving 32 atoms with a total of 116 electrons occupying 64 states. Three dif-
ferent types of atoms were used in the calculation: 16 titanium atoms, 12 alu-
minum atoms, and 4 carbon atoms. At each step of the code, the resulting k-
space eigenvalues and eigenfunctions are computed and printed. After the final
step, the total energy is calculated.
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To analyze the time spent in initialization and problem setup, the first test
case, inp, was run for five steps, while the second, inp.2, treated the same prob-
lem but was run for only one step. The times for these test cases are shown in Ta-
ble 13, and relative performance is given in Table 14. If the setup time was negli-
gible and if the work performed by the code in the first time-step was the same as
that performed in subsequent time-steps, then inp should take five times longer
than inp.2. Instead, roughly a factor of 2 is seen.

A speedup efficiency close to unity is seen when moving from 16 to 32 pro-
cessors across all platforms. However, the test cases do not scale well beyond 32
CPUs. Furthermore, for every system except the T3E, the 64-processor runs
were actually slower than the 32- and 48-processor runs. It seems likely that for
this particular test case a communication bottleneck has been encountered. This
is most likely due to the too small size of the test case. Further exploration of the
performance of FEMD on a larger number of processors should use a more com-
plex problem with more states and/or more atoms.

Table 13
FEMD Walltimes in Seconds on Various Systems
Cray IBM IBM SGl SGl
Test Case CPUs T3E SP2 SP3 02K 03K
inp 16 10800 11574 5579 10571 4526
32 5109 5711 2868 5321 2239
48 4698 5895 2779 2173
64 4537 8418 4416 2246
inp.2 16 6283 6574 3278 2646
32 2958 3330 1701 _ 1276
48 2755 3398 1681 1249
64 2601 4555 2554 1291
Table 14
FEMD Performance Relative to the O3K
, Cray IBM IBM SGl sGl
Test Case CPUs T3E Sp2 SP3 02K 03K
inp 16 0.42 0.39 | 0.81 0.43 1.00
32 0.44 0.39 0.78 0.42 1.00
48 0.46 0.37 0.78 1.00
64 0.50 0.27 0.51 1.00
inp.2 16 0.42 0.40 0.81 1.00
32 0.43 0.38 0.75 1.00
48 0.45 0.37 0.74 1.00
64 0.50 0.28 0.51 1.00
Average 0.45 0.36 0.71 0.42 1.00
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For these test cases, the O3K shows a significant advantage over the other
platforms. However, this result should be qualified by the fact that the code had
to be compiled without optimizations on the IBM machines. With compiler opti-
mizations enabled, the SP3 times would presumably be closer to the O3K.

FEMWATER123

Code description

FEMWATER123, written in Fortran 77, models groundwater flow through a
3-D volume of varying density and properties. The code is a result of a collabo-
rative effort in the early 1990s between the Athens Environmental Research Lab-
oratory! of the U.S. Environmental Protection Agency and the U.S. Army Engi-
neer Waterways Experiment Station. It is an updated implementation of two
older models: the flow model 3DFEMWATER (Yeh 1987) and the transport
model 3DLEWASTE (Yeh 1990). A single coupled flow and transport model
was created in a collaborative effort between Dr. Yeh and Dr. Hsin-Chi Lin at
Waterways Experiment Station (Lin et al. 1997). A parallel version of FEMWA-
TER123, using MPI, has recently been developed by Dr. Fred Tracy and Mr.
Dave Richards of ERDC. Distribution of the computation across the processors
is accomplished using ParMETIS, the parallel grid-partitioning library noted
earlier. FEMWATER123 has been tested on all the HPC systems at ERDC.

A typical FEMWATER123 run has about 100,000 elements and typically
uses up to about 40 processors. As an example, a 1-year simulation, with about
65,000 elements running on 40 processors on the T3E at ERDC, successfully
completed in about 16.5 hr.

Performance

A classic test problem utilizing the 1-2-3-D coupling implemented in
FEMWATER123 is a Dade County, Florida, model (fred.3bc.1) where canals
interact with the surface water and groundwater flow (Tracy and Richards 2000).
The 1-D canal structures and 2-D surface model that are coupled to the 3-D flow
model greatly complicate the computation. This complex system is modeled by a
grid of 4,720 surface mesh nodes, 37,760 total nodes, and 65,429 tetrahedral ele-
ments. This case ran for 14,400 time-steps. Walltimes and relative performance
are shown in Tables 15 and 16, respectively. These times are the sum of the
times of all four programs required to run a FEMWATER123 simulation to com-
pletion. Obviously, this problem is not scalable. Within the parallel version of
FEMWATERI123, there is a crossover from a computational bottleneck at lower
numbers of processors to a communication bottleneck at higher numbers of pro-
cessors. Hence, the optimum performance for this test case is around 24-32 pro-
cessors. Increasing the number of time-steps will not make this problem more
scalable; rather, the number of nodes or elements used for the calculation must be
increased. Longer runs indicate that walltime scales linearly with the number of

I Now the National Environmental Research Laboratory (NERL).
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Table 15
FEMWATER123 Walltimes in Seconds on Various Systems
Cray IBM IBM SGl sal
Test Case CPUs T3E SP2 SP3 02K 03K
fred.3bc. 1 8 4277 4580 2832 3272 1516
12 4125 4797 2837 3473 1528
16 4011 4613 4127 3013 1418
24 3415 4415 3988 1264
32 3174 4333 2396 2933 1261
48 3203 5202 2670 2605 1273
Table 16
FEMWATER123 Performance Relative to the O3K
Cray IBM IBM SGl sGl
Test Case CPUs T3E SsP2 SP3 02K 03K
fred.3bc. 1 8 0.35 0.33 0.54 0.46 1.00
12 0.37 0.32 0.54 0.44 1.00
16 0.35 0.31 0.34 0.47 1.00
24 0.37 0.29 0.32 1.00
32 0.40 0.29 0.53 0.43 1.00
48 0.40 0.24 0.48 0.49 1.00
Average 0.37 0.30 0.46 0.46 1.00

time-steps, indicating that the combined setup time of all four programs is rela-
tively small for this FEMWATER123 simulation.

For this particular test case, the O3K outperforms the other platforms. Based
on experience with the T3E and the observation from these data that the O3K is
about 2.7 times faster than the T3E, an extension of this test case to 1 year of
simulated time would require an estimated 6.3 hr using the optimum number of
CPUs as discussed above.

GAMESS

Code description

The General Atomic and Molecular Electronic Structure System (GAMESS)
is a code for computational quantum chemistry (Schmidt et al. 1993). It is an ab
initio code in that material properties are calculated from first principles (i.e., the
number, type, and position of the atoms in a molecule must be specified as initial
conditions for the computation). GAMESS evolved from several earlier quan-
tum chemistry codes, in particular, HONDO, which was developed using funding
from the National Science Foundation and the Department of Energy.
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Development continues at Iowa State University with sponsorship from the Air
Force Office of Scientific Research (Department of Chemistry, Jowa State Uni-
versity 2000).

GAMESS has an extensive set of capabilities. Following calculation of the
molecular energy, GAMESS users may direct the code to calculate analytic and
numerical gradients, analytic and numerical Hessians, and other properties.
GAMESS also provides a variety of wave functions to use in the computations,
including restricted Hartree-Fock, unrestricted Hartree-Fock, restricted open-
shell Hartree-Fock, and generalized valence bond. A complete description of the
program’s capabilities and the input language interface may be found in the
user’s guide (Department of Chemistry, Towa State University 2000).

The version of GAMESS used in these tests was dated 25 March 2000; it
consists of 238,315 nonblank, noncomment LOC, with 782 LOC written in C,
and the remainder in Fortran 77. The Fortran source files must be tailored to a
specific system using a custom preprocessor supplied as part of the GAMESS
distribution.

Performance

Two test cases were used to test the performance of GAMESS. The first
case, cycl, models cyclic AMP (CyoH;;N5OgP); this 33-atom molecular model
has 356 Cartesian Gaussian basis functions and 85 occupied orbitals. This simu-
lation specifies a restricted Hartree-Fock calculation providing both the molecular
energy and the gradient, and requires minimal disk storage. The energy compu-
tation converges in 14 iterations.

The second test case, hedm, models an HEDM molecule (C,N;(0,) without
N,. This 16-atom molecular model has 560 Cartesian Gaussian basis functions
and 57 occupied orbitals. A restricted Hartree-Fock calculation that computes
only the molecular energy is specified. Even though this model has fewer atoms
than the first test case, the larger number of basis functions makes it a more com-
plex problem to solve. The energy computation converges in 18 iterations.

The walltimes for the the cycl and hedm test cases are included in Table 17
and the relative performance is given in Table 18. It is clear from the times pre-
sented in the table that both cases exhibit quite acceptable scaling, and that the
O3K significantly outperforms the other systems.

ICEPIC

Code description

The Improved Concurrent Electromagnetic Particle-In-Cell (ICEPIC) code is
a parallel, 3-D PIC computer simulation tool for fully relativistic problems
involving collisionless or low-collisonality plasmas in complex geometries.
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Table 17
GAMESS Walltimes in Seconds on Various Systems

Cray IBM IBM SGI SGI
Test Case CPUs T3E SP2 SP3 02K 03K
cycl 4 3880 7815 4378 6080
8 2064 4297 2306 3103
16 1131 2318 1257 1632 769
32 660 1372 847 895 427
64 417 877 696 516 260
hedm 32 6273 15079 8471 9517 4371
64 3441 8168 4914 4997 2356
96 2495 6342 3346 3492 1633
128 2022 5031 3971 2804 1270
192 4199
Table 18
GAMESS Performance Relative to the O3K
Cray 1BM IBM SGI SGI
Test Case CPUs T3E Sp2 SP3 02K 03K
cycl 4
8
16 0.68 0.33 0.61 0.47 1.00
32 0.65 0.31 0.50 0.48 1.00
64 0.62 0.30 0.37 0.50 1.00
hedm 32 0.70 0.29 0.52 0.46 1.00
: 64 0.68 0.29 0.48 0.47 1.00
96 0.65 0.26 0.49 0.47 1.00
128 0.63 0.25 0.32 0.45 1.00
192
Average 0.66 0.29 0.47 0.47 1.00

ICEPIC was designed to take full advantage of the speed and power of paral-
lel architectures and is one of the few PIC codes that is scalable to a large number
of processors. To enable the code to operate efficiently on parallel platforms,
ICEPIC was equipped with several special features, including automated parti-
tioning, an advanced parallel PIC algorithm, and dynamic load balancing.
ICEPIC is written entirely in ANSI C and uses the standard MPI communica-
tions interface to maintain portability.

Originally, ICEPIC was developed as a parallel, fully 3-D PIC code with a
variable Cartesian mesh. Its capabilities have since been expanded to include
2-D Cartesian and 2-D and 3-D cylindrical simulations. ICEPIC can execute in
serial or parallel mode for all 2-D and 3-D simulations. It has been tested on a
variety of systems, including SP2s, SP3s, and other RS/6000 systems running
AIX, Origins running IRIX, T3Es running UNICOS, Sun workstations and

Chapter 3 Dedicated Run Results

33



clusters running Solaris and MPICH, and Intel/AMD workstations and clusters
running LINUX and MPICH. ICEPIC is export-controlled. It was distributed
by ERDC after the appropriate Air Force release forms were signed.

Performance

Typical production runs of ICEPIC last 48 hr or more on 64-96 CPUs. In
this benchmark, however, the average walltime is significantly less, typically on
the order of 1 hr. Vendors were required to run ICEPIC on several different
input sets and processor ranges as summarized in Table 19. The first three test
cases involve similar problems of increasing size.

Timings are presented for the test cases ice.dat.128 and mitl.dat (a total of
five tests) in Table 20, and performance relative to the O3K is given in Table 21.
Clearly, the O3K outperforms the other platforms for these test cases. The SP3’s
performance reflects its lower processor speed of 222 MHz. Running this code
on a 375-MHz SP3 presumably would result in performance much closer to the
O3K. For the test case ice.dat. 128, the SP3, the T3E, and the O3K all show a
superlinear speedup as the number of processors is increased. Experience indi-
cates that this probably results from program data becoming cache-resident.!

Table 19
ICEPIC Test Cases
Test Case Number of CPUs
jce.dat. 16 16, 32, 64, 128
ice.dat.64 16, 32,64, 128
jce.dat. 128 16, 32, 64, 128
mitldat 16, 32
=
Table 20
ICEPIC Walltimes in Seconds on Various Systems
Cray IBM 1BM SGl SGl
Test Case CPUs T3E SP2 SP3 02K 03K
jce.dat. 128 16 17577 11009
32 10448 8196 7261 5080
64 5917 5496 3862 4653 2154
128 2832 3000 1808 2380 916
mitl.dat 32 1345 2093 954 1129 614

! For a well-written code running a fixed size problem, memory requirements should grow slowly
as the number of CPUs is increased. Available cache memory will grow linearly with the number
of CPUs, so more and more of the data formerly in memory will reside in cache. Significantly, the
system that has the poorest speedup for this test case, the SP2, has no second-level cache.

34 Chapter 3 Dedicated Run Results




Table 21

ICEPIC Performance Relative to the O3K
Cray IBM IBM SGl SGI
Test Case CPUs T3E SP2 SP3 02K 03K
jce.dat. 128 16 : 0.63 1.00
32 0.49 0.62 0.70 1.00
64 0.36 0.39 0.56 0.46 1.00
128 0.32 0.31 0.51 0.38 1.00
mitl.dat 32 0.46 0.29 0.64 0.54 1.00
Average 0.38 0.37 0.59 0.52 1.00

LESLIE3D

Code description

LESLIE3D is a 3-D, Navier-Stokes solver for turbulent reacting flows over
structured rectangular or cylindrical grids; it was developed at Computational
Combustion Laboratory at the Georgia Institute of Technology. LESLIE3D
solves the fully compressible Filtered Navier-Stokes equations, the conservation
of mass, momentum, energy, and chemical species equations using an explicit
finite-volume scheme that is fourth-order accurate in space and second-order
(explicit) in time. MacCormack’s predictor-corrector method (MacCormack
1969) for the time integration was used. The code is designed to operate either as
a direct numerical simulation approach or as a large-eddy simulation (LES)
approach. In the LES approach (which is used for the benchmark), all scales
larger than the grid are resolved using the finite-volume scheme, and only scales
smaller than the grid. are modeled using a subgrid model. LESLIE3D is nota
CHSSI code and has no export control restrictions.

In addition to the basic conservation equations, LESLIE3D solves a one-
equation model of the subgrid kinetic energy of the turbulence (Ky). Kigs IS
used to close the unresolved terms in the LES model that arise from the spatial
filtering of the governing equations. LESLIE3D is capable of employing a local-
ized dynamic evaluation of several of the scaling factors in the turbulence mod-
els, such as the coefficients in the subgrid closure. This process, known as
Dynamic K g, was developed by W.-W. Kim and Suresh Menon of the Georgia
Institute of Technology.

The code has been used for various reacting and nonreacting flows such as
swirl-stabilized combustion in a gas turbine (Kim, Menon, and Mongia 1999),
spatial compressible mixing layers (Fernand and Menon 1993), and combustion
instability in ramjet engines (Menon 1995). An extensive bibliography on LES
research may be found at the Georgia Institute of Technology web site (Computa-
tional Combustion Laboratory, School of Aerospace Engineering 2000).
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However, the version used for the benchmark solves a simpler flow of a tem-
poral mixing layer formed between two parallel plates that are moving in oppo-
site directions. A uniform grid distribution in all three directions is used to
resolve the flow in a cubic volume. Two scalar species are also simulated to
mimic fuel and air mixing in the mixing layer. Thus, a total of eight conservation
equations are solved in the code used for the benchmark. For the fourth-order
scheme, two layers of ghost cells are required in each processor at every time-
step. For the localized dynamic evaluation of the subgrid model (not used for the
benchmark), three layers of ghost cells are required.

There exist solvers for both cylindrical and square configurations. The algo-
rithm is suitable for high-resolution simulations of free shear flows (mixing lay-
ers, isotropic turbulence, flame propagation, etc.). Curvilinear coordinate trans-
formations are not performed, so a uniform grid is required. The code allows a
choice for the order of spatial accuracy (2 or 4), the number of chemical species
(none, flame model, or multiple species), the LES turbulence model (standard or
k-equation model), and inviscid or viscous flow. The benchmark version of the
code was set up for fourth-order spatial accuracy, two chemical species, viscous
flow, and the standard LES turbulence model.

LESLIE3D is written entirely in Fortran 77 and is parallelized using MPIL.
Some parallelization has also been implemented using OpenMP, but this was not
used in these tests. LESLIE3D is quite portable, requiring only a Fortran 77
compiler and the MPI library. The current code was written and tested on the fol-
lowing operating system/compiler combinations: SGI IRIX64/£77/£90, Cray
UNICOS/f90, IBM AIX/xIf, GNU/g77, and PGI/pgf77. Only slight modifica-
tions were required, e.g., changing the access=keyword in the open statement
to position= when using £90.

Performance

Only one test case was used for the LESLIE3D runs. The problem simulated
is a 3-D temporally evolving mixing layer in which the shear layer rollup is due
to the nonlinear growth of the fundamental mode of instability. For the bench-
mark tests, the top half is made up of fuel and the bottom half is made up of oxi-
dizer, and, thus, the problem is of fuel-air mixing between two species. This test
case takes only 500 time-steps and the simulation model employs an LES
approach that involved solution of another equation for K. Thus, a total of
eight equations are solved on the computational domain. The grid size was
128 x 128 x 128 for all runs, but the processor grids were 1 x2 x4, 1 x4 x 4, and
2 x 4 x 4, for a total of 8, 16, and 32 MPI processes, respectively.

Table 22 shows the resulting walltimes, while Table 23 gives the relative per-
formance. Good speedup is observed on all the platforms tested, with the O3K
running the code the fastest. It is interesting to note, though, that the difference
in timings between the O3K and the SP3 is much less than that observed in other

application runs.
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Table 22
LESLIE3D Walltimes in Seconds on Various Systems
Cray IBM IBM SGI SGl
Test Case CPUs T3E SP2 SP3 02K 03K
128x128x128 8 4805 5766 3081 5711 2747
16 2492 3115 1653 2926 1406
32 1322 1670 927 1612 729
Table 23
LESLIE3D Performance Relative to the O3K
Cray IBM IBM SGI SGl
Test Case CPUs T3E SP2 SP3 02K 03K
128x128x128 8 0.57 0.48 0.89 0.48 1.00
16 0.56 0.45 0.85 0.48 1.00
32 0.55 0.44 0.79 0.45 1.00
Average 0.56 0.45 0.84 0.47 1.00
MD-Multiscale

Code description

MD-Multiscale implements the coupling of length scales method for simu-
Jating multiscale materials phenomena. It uses a molecular dynamics approach to
give an atomistic description of the material, using a quantum-mechanical
description of bonding in a limited region where it is required and a faster, but
less accurate, empirical description in the rest of the system. In this benchmark,
the code is used to simulate the fracture of silicon, where the quantum-mechani-
cal description of bonding near the tip of the crack is needed to reproduce experi-
mental results. Improved understanding of fracture will enhance the ability to
design stronger materials from silicon and related materials used for micro-
machines and to design ceramics used for structural applications.

The version of MD-Multiscale used in these tests consists of 18,560 non-
blank, noncomment LOC, with 1,698 LOC written in C and the remainder in For-
tran 90. Both the C and Fortran source files must be fed to the C preprocessor to
tailor the code to a particular system and to consistently substitute formulas in the
program. Attempts to migrate the code to the T3E were unsuccessful, so no tim-
ings or scores for the T3E will be presented.
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Performance

To fit into the throughput tests, the 100 time-step test data test.100 was
reduced to 10 time-steps in zest. 10; all other input values remained the same. Ta-
ble 24 shows the walltimes for the MD-Multiscale test cases, while Table 25
gives the relative performance.

Running the code on large numbers of processors does not appear profitable
on the O3K, and its scalability is not particularly good on the IBM systems. A
possible explanation for this lackluster performance may be the calls to the ps
command from within the code and the considerable amount of formatted debug-

ging output produced.
Table 24
MD-Multiscale Walltimes in Seconds on Various Systems
Cray IBM IBM SGl SGI
Test Case CPUs T3E SP2 SP3 02K 03K
test.10 64 1292 912
test. 100 32 12765 8107 5657
52 10061 6605 9861 4601
101 7634 4746 5472

Table 25
MD-Multiscale Performance Relative to the O3K
Cray 1BM IBM SGl SGI
Test Case CPUs T3E Sp2 SP3 02K 03K
test. 10 64
test.100 32 0.44 0.70 1.00
52 0.46 0.70 047 1.00
101 0.72 1.15 1.00
Average 0.54 0.85 0.47 1.00
NLOM

Code description

The NRL Layered Ocean Model (NLOM) has a development history extend-
ing back to at least 1980 (Hurlburt and Thompson 1980). It has been used to
model semi-enclosed seas, major ocean basins, and the global ocean, and uses a
tiled, data-parallel programming approach (Wallcraft and Moore 1997). Details
on its usage may be found in the user’s guide (Wallcraft 2000).
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NLOM is a highly portable code that runs on a variety of parallel systems
using MPIL, MPI-2 PUT/GET, SHMEM, High Performance Fortran, Co-Array
Fortran, OpenMP, and even Fortran autotasking. NLOM has been included in
prior DoD HPC benchmark exercises; thus, many vendors had some familiarity
with the code. However, the test case used here is four times larger than that used
in 1998. The NLOM distribution contained instructions for installing NLOM on
a variety of platforms. NLOM has been ported and tested on SP2s, SP3s, O2Ks,
O3Ks, T3Es, Sun E10000s, and HP Exemplars. The MPI version was required in
the benchmark, but vendors were allowed to report results from dual-level
MPI/OpenMP and SHMEM versions.

Performance

The NA825 test case simulates 3.05 model days on a 1/64 degree 5-layer
Atlantic Subtropical Gyre region (grid size 4096 x 2688 x 5). About 12 GB of
memory and 20 GB of scratch disk space were required. The run included I/0
and data sampling typical of a production run but did not include an initialization
step, which was performed as a separate job. Vendors were required to run this
case at 28, 56, and 112 CPUs; optionally, runs at 14, 84, 168, 224, 336, 448, 672,
and 896 CPUs were requested to aid the analysis of system scalability.

The walltimes for this test case are shown in Table 26 and the relative perfor-
mance in Table 27. Only the T3E was able to run the test cases with more than
256 processors. The results indicate that NLOM does not scale well at larger
processor counts for this model size. The T3E times were obtained using the
SHMEM version of NLOM, and the SP3 times were obtained before installation
of the IBM “Switch2” interconnect. Counter to expectations, the performance of
the O2K relative to the O3K (0.41) is somewhat slower than what would be indi-
cated by the improvement in clock speed (195 MHz / 400 MHz = 0.4875) (Hens-
ley et al. 2001). Relative performance of the Cray and IBM systems decreases as
the number of CPUs increases; this falloff is most severe for the SP3.

Table 26
NLOM Walltimes in Seconds on Various Systems
Cray IBM IBM SGl SGI
Test Case CPUs T3E SP2 SP3 02K 03K
NA825 28 9213 | 14457 6728 | 14495 6300
56 4459 8231 3664 7963 2933
112 2497 7057 2112 3807 1602
168 4956 1631 1101
224 1499 4109 1497 917
336 1240
448 1123
672 1068
896 1091
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Table 27
NLOM Performance Relative to the O3K
Cray IBM IBM SGl SGli
Test Case CPUs T3E SP2 SP3 02K 03K
NA825 28 0.68 0.44 0.94 0.43 1.00
56 0.66 0.36 0.80 0.37 1.00
112 0.64 0.23 0.76 0.42 1.00
168 0.22 0.68 1.00
224 0.61 0.22 0.61 1.00
336
448
672
896
Average 0.65 0.29 0.76 0.41 1.00

PRONTO

Code description

PRONTO is a 3-D transient dynamics code developed at SNL that models
the deformations of nonlinear materials subjected to extremely high strain rates
(Flanagan and Flanagan 1989, Sandia National Laboratories 2000). Transient
dynamics analysis is important in a variety of industrial applications; examples
include simulation of vehicle crashes, forging metal, and container denting and
deformation. PRONTO’s smoothed particle hydrodynamics capability enables it
to simulate cases with extremely high strains (e.g., explosive events) as well as
coupled structure interactions (Attaway €t al. 1997). PRONTO is part of the
Sandia Engineering Analysis Code Access System (SEACAS). This system
includes tools for preprocessing, postprocessing, database translation, and graph-
ics. PRONTO does not perform any mesh generation or postprocessing analysis;
rather it relies on external applications to perform those processes.

Two test cases were chosen as part of the benchmark suite; both of these tests
are included with the PRONTO code distribution. The first test, brick-wall, sim-
ulates a brick wall being hit by an elastic rod using approximately 6,100 ele- -
ments. The second test, beam-large-mesh, uses more than 200,000 elements to
model the deformation of a beam under a load. Mesh generation was not part of
the benchmark; only the execution time for PRONTO itself was recorded.

Performance

PRONTO was included in the test suite late in the benchmarking effort.
Consequently, it was not possible to get the code running on non-SGI systems,
and a discussion of relative performance is not possible. Tables 28 and 29 pro-
vide the performance data that were obtained.
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Table 28
PRONTO Walltimes in Seconds on Various Systems
Cray 1BM IBM SGI SaGl
Test Case CPUs T3E spP2 SP3 02K 03K
beam_large_mesh 16 1350
32 684
64 353
128
brick_wall 4 2458 1098
8 675
16 479
32 399
Table 29
PRONTO Performance Relative to the O3K
Cray IBM 1BM SGl SGi
Test Case CPUs T3E SP2 SP3 02K 03K
beam large_mesh 16 1.00
32 1.00
64 1.00
128
brick_wall 4 0.45 1.00
8 1.00
16 1.00
32 1.00
Average 0.45 1.00
SARA-3D

Code description

The Structural Acoustic Radiation Analyzer (SARA) family of finite-element
codes (SARA-2D and SARA-3D) has been designed to efficiently solve complex
structural acoustic problems by using finite elements to model both the structure
and the fluid (BBN Technologies 2000). SARA-3D is a dual-level MPI/OpenMP
parallel code developed at BBN Technologies, with help from the ERDC
MSRC’s Computational Science and Engineering Group (CS&E). A variety of
quadratic structural and continuum elements are available for modeling the struc-
ture, while pressure-type acoustic fluid elements are used to model internal fluids
and the external field near the structure (the “near field””). The unbounded exter-
nal fluid (the “far field”) is modeled with infinite elements that include in their
formulation the outward traveling and decaying wave shape. The excitation may
be by mechanical forces or acoustic sources using either plane or spherical
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waves. The combination of finite and infinite elements has been shown to be sig-
nificantly more economical than using finite and boundary elements for compara-
ble problems. If near or far field pressure fields are desired, they are obtained via
the Helmholtz integral equation from velocities and pressures computed at the
fluid-structure interface. The infinite/finite element technique used in SARA-3D
provides an effective method for solving the fluid-structure acoustics problem.
Important features of SARA-3D’s solution approach are as follows:

a. The resulting fluid-structure interaction equations are symmetric and
banded, and, hence, can be solved efficiently.

b. Infinite elements reduce the exterior fluid field to a few element layers.

¢. Exterior fluid field normal to the structure is constant with frequency, but
element size is varied.

d. As SARA-3D problems get larger, the infinite element method is more
efficient than the boundary element method.

The SARA software consists of SARA-2D, which solves axisymmetric and
2-D geometries, and SARA-3D, which treats general 3-D geometries with arbi-
trary loadings. The following types of problems ve been solved using SARA:

a. Structural vibrations. Compressible isotropic and anisotropic materials as
well as incompressible isotropic materials can be analyzed. Frequency-
dependent moduli and loss factors may be included. Continuum and shell
elements are available for modeling.

b. Structural acoustics. Pressure-type fluid elements are provided for mod-
eling internal or external fluids. The representation of infinite fluids is
enhanced by infinite elements that include in their complex representation
the outward traveling and decaying wave shapes. Separate fluid and
structure models are created and connected via coupling elements.

c. Radiation problems. A variety of loadings may be applied to the structure
to calculate radiated sound in the field.

d. Scattering problems. Appropriately directed and phased loadings are
applied at the fluid-structure interface to represent incident plane scattered
or spherical waves, and the field pressures are computed.

e. Electroelasticity. Piezoelectric elements, materials, and boundary condi-
tions are provided to facilitate the modeling of transducer structures.

' Additional features include built-in mesh generation for the structural and
interior fluid models and automated generation of a frequency-dependent exterior
fluid model. Structures may consist of plates and shells with discrete or smeared
stiffeners, compressible or incompressible solids, and/or coatings and absorptive
layers. In addition, a continuum beam, which provides an exact solution of Tim-
oshenko’s beam theory, is available. Materials include various types of anisot-
ropy, frequency-dependent moduli, and structures. Results such as velocities,
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pressures, and power can be postprocessed in a variety of ways and output to
graphics programs for line plots, color contour plots, etc.

Capabilities also exist for efficient solving of axisymmetric structures with
limited nonsymmetric components by using a substructure approach that com-
bines the fluid-loaded shell from SARA-2D with any SARA-3D model. The
axisymmetric fluid-loaded shell can be solved as a series of uncoupled 2-D prob-
Jems far more economically than as a full 3-D problem. Coupling this solution to
3-D parts of the problem can result in significant savings in computation costs.

Typically, SARA-3D is used to model the frequency response to incident
waves of a structure such as a submarine or airplane surrounded by a fluid. The
calculations for each freqency are completely independent. SARA-3D exploits
dual-level or nested parallelism by using MPI to parallelize the code that cycles
through the input frequencies (the “frequency loop™) and using OpenMP to par-
allelize certain calculations for each frequency. In particular, each frequency
leads to a large sparse system of linear equations, and the frontal solver used to
solve the system has been parallelized using OpenMP.

SARA-3D is written primarily in Fortran 77, but includes a few C routines. It
runs on many systems, including Cray T3Es, IBM SPs, and SGI Origins, and
Convex, DEC, HP, and Sun systems. It may only be distributed to U.S. citizens.

Performance

The basic input file describes a parameterized model of a submerged, stiff-
ened cylindrical shell with hemispherical endcaps subjected to forces on the
shell. Parameter P2, the circumferential direction, was set to either 10 for a
small problem or to 20 for a large problem, while the number of frequencies was
either 64 or 128. This resulted in the four test cases shown in Table 30.

Table 30

Characteristics of SARA-3D Test Cases
Test Case Size | P2 | Frequencies
tape5.10.064 small | 10 64
tape5.10.128 small | 10 128
tape5.20.064 large | 20 64
tape5.20.128 large 1 20 128

Table 31 gives the walltime SARA-3D on various computers for different
MPI/OpenMP processor configurations. The column labeled “Threads/Process”
gives the number of OpenMP threads per MPI process, and the product of “MPI
Processes” and “Threads/Process” is equal to the number of CPUs. The timings
show that doubling the number of frequencies from 64 to 128 for a given problem
and MPI/OpenMP processor configuration increases the execution time by less
than a factor of 2. This is because the frequency loop is parallelized using both
MPI and OpenMP, while a significant amount of time is needed to perform
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particular one-time operations (e.g., the *“‘prefront” and postprocessing phases),
which are outside the frequency loop and are only parallelized in OpenMP mode.
The cost of these one-time operations is amortized as the number of frequencies
handled by each MPI process grows, thus increading MPI parallel efficiency.

For a fixed number of processors on systems that support OpenMP (e.g., the
SP3 and the Origins), use of mixed-mode parallelism (i.e., Threads/Process > 1)
may reduce the walltime relative to a pure MPI run (Threads/Process = 1); this
effect is more pronounced for 64 frequencies than for 128 frequencies. As the
number of frequencies grows, MPI parallel efficiency dominates OpenMP effi-
ciency, and thus it may be more efficient to use fewer OpenMP threads, as can be
seen in Table 31. Performance relative to the O3K is given in Table 32.

Table 31
SARA-3D Walltimes in Seconds on Various Systems
MPI Threads/ Cray IBM IBM SaGl SGl
Test Case CPUs | Processes | Process T3E sP2 . SP3 02K 03K
tape5.10.064 16 16 1 7344 3599 1922 2679 1496
tape5.10.128 16 16 1 10866 5803 3444 3806 2266
tape5.20.064 32 32 1 21464 10145 5856 8784 6561
8 1 8 11443 28540
32 16 2 5681 8673 3550
32 8 4 5278 16987 3660
tape5.20.128 32 32 1 32109 16044 8304 13756 8919
8 1 8 18046 50076
32 16 2 8326 10719 5694
32 8 4 8251 12336 6268
Table 32
SARA-3D Performance Relative to the O3K
MPI Threads/ Cray IBM IBM SaGl SGI
Test Case CPUs | Processes Process T3E SP2 SP3 02K 03K
{ape5.10.064 16 16 1 0.20 0.42 0.78 0.56 1.00
fape5.10.128 16 16 1 0.21 0.39 0.66 0.60 1.00
tape5.20.064 32 32 1 0.31 0.65 1.10 0.75 1.00
8 1 8
32 16 2 0.62 0.41 1.00
32 8 4 0.69 0.22 1.00
{ape5.20.128 32 32 1 0.28 0.56 1.07 0.65 1.00
8 1 8
32 16 2 0.68 0.53 1.00
32 8 4 0.76 0.51 1.00
Average 0.25 0.50 0.80 0.53 1.00
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UNCLE

Code description

UNsteady Computation fieLd Equations (UNCLE) is a parallel incompress-
ible flow simulator developed and maintained by the Computational Simulation
and Design Center Engineering Research Center for Computational Field Simu-
lation at Mississippi State University on behalf of the Office of Naval Research.
UNCLE was designed to solve Unsteady Reynolds-Averaged Navier-Stokes
equations. Complex geometries, such as submarines and surface ships, may be
represented by multiblock structured grids with arbitrary block connectivity
(Computational Simulation and Design Center, College of Engineering 2000).
Written in Fortran 90 and using MPI, UNCLE runs on a variety of systems.

‘Along with UNCLE, Utilities for Solver Setup (USS-UNCLE) contains vari-
ous tools to simplify the use of UNCLE for the analysis and design of a variety
of naval applications. The graphical capabilities of USS-UNCLE include pre-
processing of grid and boundary conditions, definition of input files, documenta-
tion, and the actual flow simulation code. For the purposes of the DoD bench-
mark, prerelease version 1.3.2 of UNCLE was used.

Performance

Depending on the complexity of the input geometry, the grid sizes can grow
quite large. Furthermore, the grid sizes will dictate the number of processors on
which a specific problem will be run. The test cases were created for use in the
benchmark by the developers of the UNCLE code. The grids created for these
inputs were generated for only 8 and 16 processors. Thus, vendors were not able
to run the problem for anything other than 8 or 16 processors. Hence, the scaling
of the code for this particular test case was not explored.

The two UNCLE test cases, sub-grid8 and sub-grid16, differ only in grid
size, which was scaled with the number of processors in order to keep the amount
of work required for 8 and 16 processors roughly equal. Furthermore, both of
these test cases were run for 30, 60, 90, and 120 cycles each. Hence, not only
can the startup time be analyzed, but the scaling of the code as the number of
cycles grows can also be studied. The grid files for both the 8- and 16-processor
runs are slightly greater than 6 MB. At the beginning of a run, each processor
had to read in this file. Periodically during the run, updated grid files are gener-
ated that can be used to restart the code.

Though vendors were required to run both with and without the restart files,
the timings contained in Table 33 were all started from scratch. For a given num-
ber of cycles, the 8- and 16-CPU runs required approximately the same amount
of walltime. Surprisingly, the 60-cycle runs for both grid sizes took nearly three
times longer than the corresponding 30-cycle runs. Finally, when compiler opti-
mizations were enabled on the IBM systems, UNCLE produced incorrect results,
so the times obtained here are for unoptimized code.
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Performance relative to the O3K is given in Table 34. The relative perfor-
mance when running on the O3K versus the O2K is again slightly greater than 2
and is probably due to faster clock rate. For small numbers of processors (e.g.,
8-16), it is typical for a code to be bound by computation rather than communica-
tion. To observe the improved performance of the O3K versus the O2K due to
factors other than a faster CPU, these test cases would have to be run using more
CPUs.

Having a grid specific to only two CPU counts, coupled with the absence of
software to generate new grids, severely limited the usefulness of UNCLE in the
test package. If UNCLE is to be included in future benchmarks, then such soft-
ware must be made available.

Table 33
UNCLE Walltimes in Seconds on Various Systems

Cray IBM IBM SGl SGI
Test Case CPUs Cycles T3E SpP2 SP3 02K 03K
sub_grid8.1.in 8 30 578 3183 1940 664 404
sub_grid8.2.in 8 60 1720 8171 5153 1922 929
sub_grid8.3.in 8 90 2862 | 13415 8346 3204 1771
sub_grid8.4.in 8 120 4003 | 18383 | 11212 4484 2632
sub_grid16.1.in 16 30 630 3976 2460 713 | 359
sub_grid16.2.in 16 60 1772 9057 5553 2003 967
sub_grid16.3.in 16 90 2014 | 14378 8660 3296 1586
sub_grid16.4.in 16 120 4058 | 19875 | 12067 4583 2202
Table 34
UNCLE Performance Relative to the O3K

Cray IBM IBM SGI SGl
Test Case CPUs Cycles T3E SP2 SP3 02K 03K
sub_grid8.1.in 8 30 0.70 0.13 0.21 0.61 1.00
sub_grid8.2.in 8 60 0.54 0.11 0.18 0.48 1.00
sub_grid8.3.in 8 90 0.62 0.13 0.21 0.55 1.00
sub_grid8.4.in 8 120 0.66 0.14 0.23 0.59 1.00
sub_grid16.1.in 16 30 0.57 0.09 0.15 0.50 1.00
sub_grid16.2.in 16 60 0.55 0.11 0.17 0.48 1.00
sub_grid16.3.in 16 90 0.54 0.11 0.18 0.48 1.00
sub_grid16.4.in 16 120 0.54 0.11 0.18 0.48 1.00
Average 0.59 0.12 0.19 0.52 1.00
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Summary of Results

Table 35 summarizes the relative performance results obtained in this study;
it contains the “Average” line from the preceding relative performance tables for
each code. It also gives an unweighted overall average relative performance for
each SUT. The same results are illustrated in Figure 3.

In summary, the O3K is the newest system evaluated in this benchmark exer-
cise. Based on the applications used here, it is more than 1.5 times faster than the
SP3, twice as fast as the T3E and O2K, and nearly three times faster than the
SP2. It would have been instructive to run this suite of tests on a system of com-
parable vintage to the O3K (e.g., a 375-MHz SP3), but such a system was

unavailable.
Table 35
Summary of Relative Performance
Cray | IBM | IBM | SGI | SGI

Code T3E | SP2 | SP3 | 02K | O3K
CHARGE 044 | 027 | 038 | 052 | 1.00
Cobalty, 047 | 051 | 08 | 056 | 1.00
CTH 067 | 038 | 082 | 048 | 1.00
FEMD 045 | 036 | 071 | 042 | 1.00
FEMWATER123 037 | 030 | 046 | 0.46 | 1.00
GAMESS 066 | 029 | 047 | 047 | 1.00
ICEPIC 038 | 037 | 059 | 052} 1.00
LESLIE3D 056 | 045 | 0.84 | 0.47 | 1.00
MD-Multiscale 0.54 0.85 0.47 1.00
NLOM 065 | 029 | 076 | 0.41 | 1.00
PRONTO 0.45 | 1.00
SARA-3D 025 | 050 | 080 | 053 | 1.00
UNCLE 059 | 012 | 019 | 0.52 | 1.00
Overall 050 | 037 | 064 | 0.48 | 1.00
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4 Throughput Tests

Introduction

Many computer platforms may perform quite well when codes are executed
in dedicated mode, but when the same codes are executed in an operational set-
ting, a much lower level of performance is observed. Thus, one of the main
weaknesses of dedicated tests is that they fail to model important features of an
actual production environment; such features are described below.

a. In a production environment with hundreds of users, the batch queuing
system and job scheduler play a vital role in maintaining a high utilization
of any HPC. Along with the large number of users, the queues are com-
plicated by differences in priorities and various resource limits, such as
time and memory. An efficient scheduler could result in a much higher
utilization and, hence, throughput for a system.

b. With multiple applications running on a system, there will be some con-
tention for resources between the jobs. For example, an application
requiring significant I/O could slow down I/O requests by other jobs.
Similarly, a job with large memory requirements could reduce the amount
of memory available to other jobs and impair system performance by
committing numerous page faults.

c. Constructing a throughput test that models the type and frequency of
actual job submissions is a daunting task. A significant problem is that,
just as there is no typical job, there is no typical mix. There are variations
in workload size and character over a workday, a work week, a fiscal year,
and, of course, due to project deadlines.

d. System outages are catastrophic events for jobs. The method of recovery
from such an occurrence is an important system characteristic. Though
no system reboots or artificial outages were forced upon a system in these
tests, throughput tests can be used to measure a system’s ability to
recover. For example, if a system employs checkpoint/restart, jobs will
generally be delayed only by the amount of time spent rebooting since the
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job state will be saved prior to rebooting, and restored at system startup.
Without this feature, jobs must be restarted from the beginning, thus wast-
ing the time used by the job before the reboot.

Resolving these issues using a synthetic benchmark test would be difficult to
construct. It would also be difficult to convince fellow scientists that such a test
was representative and meaningful. Although arguably just as difficult to con-
struct, a throughput test constructed using actual codes is probably the best way
to approach the problem.

Vendors were required to complete two throughput tests. This chapter
describes the steps taken to create, test, and validate the job mixes used in those
tests. How the system usage data from various sites was used to create these
mixes is explained. An algorithm was developed to select applications and test
cases subject to weighted constraints on the number of CPUs used and CTA type.
This algorithm will be described, and results from throughput tests conducted on
Government systems will be presented.

The throughput tests discussed here were run on the ERDC SGI O2K; its
specifications have already been given in Table 5. The batch scheduler, PBS,
provides several scheduling algorithms, various prioritization schemes, and mul-
tiple queues. Here, however, the default method was used, and test jobs were
submitted to a single queue. PBS applied a ““first-fit” criterion to select the next
job to run (i.e., jobs waiting to run are ordered by arrival time, and when CPUs
become available, the job list is searched and the first job that requires that many
CPUs or less is placed in execution).

Analysis of ERDC’s Usage

The first step in the creation of these throughput tests was an analysis of sys-
tem usage throughout the HPCMP. Chapter 2 described the data received from
all four MSRCs and how these data were used to select the 13 applications and
the associated test cases used in the dedicated tests. To simplify the task of the
benchmark team and the vendors, these same test cases were used to construct
the throughput test. However, a representative mix (i.e., the number of instances
of each case and the time of submission of each instance), still had to be deter-
mined. In order to create this list of jobs, job logs from all of the HPC systems at
ERDC covering 1 January 1999 to 8 September 2000 were analyzed.

In order to create a site-wide profile, a histogram was created showing the
number of CPU hours for each job versus the percentage of the total number of
CPUs in that particular system used by that job. This allowed data from multiple
machines with differing numbers of CPUs to be combined.! Hence, the CPU
hours for a job which uses 128 CPUs on a machine with a total of 256 CPUs
would be placed in the 50 percent bin; a job requiring 64 out of 512 CPUs would
be placed in the 12.5 percent bin. After all jobs in the sample were categorized in

! Only aggregate usage of ERDC HPC systems is discussed here; usage of individual HPCs at
ERDC is presented elsewhere (Duffy et al. 2000).
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this fashion, the bins were normalized so that the area under the histogram was
100 percent.

To simplify this analysis, no distinction was made between a job requesting
the same percentage of CPUs but running for a significantly different amount of
walltime; such a distinction could be quite important. For example, suppose a
system runs a significant number of jobs with only a few processors and those
jobs run for a long period of time. Then a throughput test should ideally include
jobs of that sort to allow evaluation of system behavior in those circumstances.
Although some adjustments in these mixes were made by hand to avoid artifacts
of scheduling that might bias the test (e.g., scheduling of long jobs late in the test
that would continue long after all other jobs had completed), no attempt was
made to match the walltimes of jobs in the actual ERDC workload.

Furthermore, in the current working environment, not all jobs go into a single
queue. Different queues are defined with various priorities in order to expedite
certain jobs and to apply differing time and memory limits. In these tests, only a
single queue was used, and all jobs were run at the same priority.

Figure 4 shows the resulting histograms for all the machines at ERDC. The
top graph in the figure uses 128 bins to display the aggregate workload data.
Moving from top to bottom in Figure 4, the bin size is doubled and the number of
bins halved for each successive graph. Use of larger bins smooths out small vari-
ations in the data and makes it easier to identify usage patterns. The bottom two
graphs clearly illustrate user preferences for jobs that use a power of two number
of CPUs. More specifically, peaks occur at 12.5, 25, 50, 75, and 100 percent of
the CPUs used. Furthermore, a large number of jobs request less than 25 percent
of a system. The large plateau of usage that occurs for a relatively low number of
processors is to be expected; many users will ask for fewer CPUs so as to get
their job to begin execution sooner, even if that means the job will run longer.

Selection of Jobs for the Throughput Tests

Determining the specific jobs to be used in the mixes was the next step in the
preparation of the throughput tests. Crucial to this process was assigning each
job a score, the computation of which is described in Appendix C, reflecting how
well it fit into the job mix. The simple greedy algorithm shown in Figure 5 uses
those scores to select jobs for inclusion in each mix.

Though a large number of application codes and test cases were used in the
creation of the throughput tests, it was difficult to fit the actual usage histograms
shown in Figure 4. To solve this problem, a simplified histogram, shown in Fig-
ure 6, was created by combining adjacent bins; note that the usage peaks now fall
in the middle of a bin. Also, due to the large number of jobs that use one or two
CPUs, a small bin for those jobs was created. The resulting profile was easier to
fit, but still preserved the important characteristics of the workload.
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SET max_cpu_hours = num_nodes * num_hours
WHILE tot_cpu_hours < max_cpu_hours DO
FOR each candidate job
COMPUTE a score measuring how well it meets mix requirements
END FOR
FOR the job with the best score DO
ADD job to the throughput mix
SET tot_cpu_hours = tot_cpu_hours + job_cpu hours
SET tot_cta_cpu_hours = tot_cta_cpu hours + job_cpu_ hours
SET tot_np_cpu_hours = tot_np_cpu hours + job_cpu hours
SET job_priority = job_priority / 2
END FOR
END WHILE

Figure 5. Greedy algorithm used to select jobs
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Figure 6. Aggregate ERDC CPU usage using unequal intervals

Rules of the Game
The guidelines for running the throughput tests were as follows:

a. The executable binary programs used for the throughput tests had to be
the same as those used for the dedicated runs. Practically speaking, there
was no way to verify vendor compliance with this requirement without a
vendor site visit, so the vendors had to be trusted to do this.
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b. The tests were to be run on a 128-processor machine with the same con-
figuration as that used in the dedicated runs.

c. The codes, test cases, and number of processors were defined and could
not be modified by the vendors.

d. All jobs had to be submitted to a single batch queue and could not be
hand scheduled in any way.

e. Only commercially available schedulers without any special modifica-
tions could be used for the throughput tests.

£ The order and time of job submission were defined in advance by the
benchmark team and could not be modified.

g. Names of job submission scripts had to end with .bat. The vendors were
provided a skeleton of each batch file to be used in the throughput tests; it
included the required commands to record walltime and list directory con-
tents (see Figure 7). This item greatly simplified validation of the results.
Although many of the codes contained internal timers, the date stamps in
the output files provided an easy, standard way to verify walltimes. Fur-
thermore, the Is -al command provided a diagnostic to ensure that nothing
unforeseen had occurred during the running of an application code.

h. A queue snapshot, consisting of the output equivalent to a gstat com-
mand, was taken once per minute and saved in a log file.

i. Finally, all the required files as specified for each code, along with the log
file of the snapshots, had to be returned with the vendor’s response.

# This file should contain the batch commands used
# to submit this job to the queue and any commands
# needed to execute the application.

# Required to be the first executable statement.
echo "Job started: ‘date”

# Commands required to execute the code: see the
# application’s readme file for more information.

# Required to be executed before the final echo
echo "Directory Listing:"”
1s -al

# Required to be the last executable statement.
echo "Job ended: ‘date'"

Figure 7. Sample batch submission script
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Execution of the Throughput Tests

Two resulting throughput tests were defined to be run by the vendors. Table
36 lists the test cases used in throughput test “A” (Mix A). This mix had the fol-
lowing properties:

a. The 50 jobs in the mix represented a hypothetical site-wide igeneric
workload. As a point of reference, each job had to be run outside the
throughput test in dedicated mode.

b. The test was designed to run 6 hr on 128 CPUs and so consume 768 CPU
hours. Further, its resulting histogram approximately matched that shown
in Figure 7.

c¢. One full configuration job requested all 128 processors.

d. The sequence of submission was given by the order in the table. This
could not be changed by the vendors.

e. The number of CPUs to be used for a test case was specified and could
not be changed.

f. Conduct of the test was controlled by a simple script that submitted the
jobs intermittently over the first hour of the mix. Ten jobs were submitted
at the beginning of the test. Every 10 min thereafter, a set of five more
jobs was submitted until all of the jobs were queued.

Included in Table 36 are two timings taken for each application benchmark
during the throughput test. First, the amount of time (in hours) spent in the queue
waiting to run is given in the column labeled *“Queue Time.” This time is just a
measure of how long the jobs spent waiting to be executed. Next, the amount of
walltime (in hours) of execution of each code is given in the column labeled
“Walltime”” Hence, the total number of CPU hours used for a single job is the
number of processors multiplied by the walltime.

Figure 8 shows the percentage of the total number of processors (in this case,
128) in use throughout the length of the throughput test A. The utilization
remained close to 100 percent for the first 3 hr of the test. At that point, the
scheduler began to starve the queue in order to allow the 128-processor CTH job
to run. This job began execution around the 4-hr mark and ended shortly there-
after. Thus, for this case, the scheduler sacrificed some efficiency in order to
allow a job that required the entire system to run.

Another aspect of the throughput test that is very important to measure is the
total amount of memory used throughout the test. Most entries created in the
accounting files on HPC systems do not keep a record of the maximum amount
of memory utilized by a single job. This data would be extremely useful in creat-
ing a more representative set of benchmark tests.

In the absence of this data, several assumptions were made about the total
amount of memory required during the running of 2 mix. First, the mixes were
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Table 36
Jobs in Throughput Test A
Queue Wall- CPU
Job | Code Test Case CPUs | Time, hr | time, hr Hours
1 | CTH mpi-001 4 4.93 1.10 4.41
2 | CTH mpi-032 32 1.70 1.61 51.43
3 | PRONTO brick-wall 4 3.19 0.67 2.69
4 | UNCLE sub-grid16.1 16 0.03 0.18 2.88
5 | GAMESS hedm 96 0.04 0.23 22.16
6 | LESLIE3D 128x128x128 32 1.87 0.91 28.97
7 | GAMESS hedm 96 1.41 0.24 22.93
8 | UNCLE sub-grid16.1 16 0.08 0.19 3.00
9 | Cobaltg, wingflap 16 0.35 2.83 45.30
10 | NLOM na825 112 0.00 1.08 121.36
11 | MD-Multiscale test. 10 64 1.63 0.38 24 11
12 | Cobaltg, wingflap 16 4.88 2.23 35.76
13 | PRONTO brick-wall 4 3.03 0.67 2.67
14 | CHARGE 500.03 2 4.77 1.37 2.73
15 | GAMESS cycl - 12 2.45 0.19 2.29
16 | LESLIE3D 128x128x128 16 0.00 1.24 19.76
17 | CHARGE 500.03 4 2.88 0.64 2.57
18 | GAMESS cyel 12 213 0.19 2.29
19 | GAMESS cyc! 64 1.70 0.05 3.38
20 | LESLIE3D 128x128x128 8 1.05 2.03 16.24
21 | GAMESS cyc! 4 2.27 0.54 2.15
22 | GAMESS cycl 64 1.70 0.05 3.1
23 | ICEPIC ice.dat. 16 64 1.70 0.10 6.56
24 | GAMESS cycl 64 1.85 0.04 2.49
25 | CTH arm.t1 128 13.27 0.64 82.28
26 | FEMD inp 48 5.74 1.90 91.32
27 | GAMESS cycl 64 1.75 0.05 3.09
28 | FEMWATER123 frec.3bc.0 16 0.66 0.41 6.55
29 | ICEPIC ice.dat.16 64 1.76 0.14 8.69
30 | LESLIE3D 128x128x128 8 1.05 2.31 18.51
31 | ICEPIC jee.dat. 16 64 1.84 0.13 8.25
32 | UNCLE sub-grid16.1 16 0.93 0.26 4.23
33 | PRONTO brick-wall 8 2.22 0.39 3.09
34 | GAMESS cycl 12 1.96 0.19 2.26
35 | LESLIE3D 128x128x128 16 1.06 1.19 19.00
36 | GAMESS cycl 4 2.14 0.54 2.15
37 | CHARGE 500.03 2 3.76 1.30 2.61
38 | Cobaltg, missile 64 3.45 0.30 19.06
39 | Cobaltg, missile 64 3.37 0.28 17.87
40 | CTH mpi-001 2 3.67 1.98 3.97
41 | UNCLE sub-grid16.1 16 0.83 0.25 3.97
42 | UNCLE sub-grid16.1 16 1.83 0.21 3.30
43 | GAMESS cycl 64 1.60 0.06 3.63
44 | LESLIE3D 128x128x128 32 1.87 0.90 28.84
45 | UNCLE sub-grid16.1 16 1.83 0.19 3.08
46 | PRONTO brick-wall 4 1.90 0.70 2.78
47 | GAMESS cycl 4 1.90 0.53 2.1
48 | CHARGE 500.03 4 1.90 0.65 2.62
49 | CHARGE 500.05 64 1.68 0.08 5.46
50 | SARA-3D sample8-064 32 3.63 1.09 34.73
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Figure 8. Resource utilization during throughput test A

not designed to test swap space. Thus, all memory requirements had to remain
lower than that amount, which would force a machine to use swap space. Fur-
thermore, at least once during the test, a large percentage of the total memory of
the platform should be in use.

Figure 8 also shows the memory usage profile for Mix A; the average mem-
ory used for the duration of the test is about 16 GB, or about one-fourth of the
total memory of the O2K. Between the fifth and sixth hours of the test, the total
memory used jumped to around 40 GB, or more than 60 percent of the total
memory.

The codes used in the second throughput test, Mix B, are given in Table 37.
This second mix has the following properties:

a. A subset of the 13 application codes was used.

b. The test was designed to run 3 hr on a 128-processor machine for a total
of 384 CPU hours.

c. Again, at least one full configuration job was included, and no specifica-
tion was made on when it could be executed.

d. The sequence of submissions was given by the order shown in Table 38
and could not be changed.
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e. The code, test case, and number of processors were specified.

£ The time of submission of the codes followed the same pattern as that
used for Mix A.

Included in Table 37 are the same measurements for the applications run in
Mix B as those presented for Mix A. Note that in this case the large configura-
tion job actually failed to run; thus, its CPU hours are set to zero in the table.

Figure 9 shows the resulting utilization versus time for Mix B. The utiliza-
tion profile is markedly different than that seen for the previous throughput test.
This same figure also presents the memory utilization profile during Mix B. The
average amount of memory use is about 21 GB, while the peak memory usage is
close to the system limit but below that which would require swapping.

Table 37
Jobs in Throughput Test B
Queue Wall- CPU
Job | Code Test Case CPUs | Time, hr | time, hr Hours
1 CHARGE 500.03 4 0.05 0.68 2.72
2 CTH mpi-032 32 2.26 4.02 128.59
3 CTH efp3d.s2 48 0.02 0.14 3.96
4 GAMESS cycl 4 0.06 0.55 2.18
5 UNCLE sub-grid16.2 16 2.68 0.54 8.71
6 SARA-3D sample8-064 32 0.47 1.68 53.89
7 UNCLE sub-grid8.2 8 0.04 0.54 432
8 | CTH efp3d.s2 48 0.02 0.14 6.64
9 UNCLE sub-grid8.2 8 0.04 0.56 4.46
10 UNCLE sub-grid8.2 8 0.04 0.60 4.82
11 CTH mpi-032 16 2.60 2.23 35.72
12 CTH mpi-001 16 1.08 0.44 7.06
13 GAMESS hedm 96 0.03 0.23 22.29
14 CTH arm.t1 64 2.32 1.38 88.55
15 GAMESS cycl 4 0.37 0.41 1.63
16 UNCLE sub-grid8.2 8 2.43 0.87 7.00
17 | CTH mpi-001 4 2.35 1.34 5.35
18 GAMESS cycl! 4 0.27 0.71 2.83
19 SARA-3D sample8-064 32 0.05 1.68 53.80
20 CTH mpi-001 16 1.27 0.51 8.20
21 UNCLE sub-grid8.2 8 2.19 0.87 6.95
22 GAMESS cycl 4 0.10 0.67 2.67
23 CTH arm.ti 128 0.00 0.00 0.00
24 UNCLE sub-grid8.2 8 2.19 0.83 6.65
25 CTH mpi-032 16 2.20 2.25 35.93
26 UNCLE sub-grid16.2 16 2.20 0.86 13.76
27 | CHARGE 500.03 2 2.21 1.55 3.10
28 CTH mpi-001 16 1.18 0.51 8.19
29 | GAMESS hedm 96 1.76 0.22 20.80
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Figure 9. Resource utilization during throughput test B

Scoring the Throughput Tests

A simple method of quantifying the quality of a throughput test is to calculate
the utilization efficiency, E, of each mix (Wong et al. 2000). The utilization effi-
ciency is a rough measure of how effectively the jobs were scheduled to runon a
given platform. This can be measured as the ratio of the total amount of CPU
hours spent in the execution of all the individual jobs with respect to the total
amount of CPU hours required to run a mix. If N; is the number of processors
requested by job i, and T; is the amount of walltime required for that job to be
run in the throughput test, then the efficiency can be caluclated as

LNT;
i
NT

where N is the total number of processors available on the machine, and T is the
total amount of walltime from the beginning of the first job to the end of the last
job.

E= 1)

Table 38 lists the elapsed time, T, for Mixes A and B. Although Mix A was
designed to run 6 hr, and Mix B for 3 hr, the elapsed walltime from the beginning
of the first job to the end of the last job was significantly longer. Since the
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Table 38
System Efficiency During Throughput Tests

Metric Mix A Mix B
Elapsed Time, T (hr) 8.42 6.67
CPU Hours - 814.67 550.78
Efficiency, E 0.76 0.63
Total Efficiency, TE 0.54 0.50

timings used to create the mixes were taken on a faster architecture, it makes
sense that the mixes would take longer than expected on the O2K. Also in Ta-
ble 39 is a measure of the total amount of CPU hours consumed by all the indi-
vidual jobs throughout the mixes. Thus, the efficiencies are easily calculated to
be 0.76 for Mix A and slightly worse for Mix B at 0.63.

There are several possible explanations for why Mix B was less efficient than
Mix A. First, the more jobs that occur in a mix, the more opportunity the sched-
uler has to backfill jobs. As more jobs are submitted to the scheduler, PBS has
the luxury of pulling from a larger pool of jobs with a variety of requested
resources in order to insert smaller jobs ahead of larger ones to better utilize the
system. The difference between 50 jobs of Mix A and only 29 jobs in Mix B was
enough to cause a significant difference in the utilization efficiency.

Another difference is the type of jobs used in the mixes. Note that for Mix A
the longest running job was an 8-processor LESLIE3D job that ran for 2.31 hr.
In Mix B, a single CTH job requiring 32 processors ran for more than 4 hr.
Thus, for 4 hr of Mix B, the scheduler had only 96 processors in which to sched-
ule fewer jobs than the initial 29.

For the measurements taken in this work, the utilization efficiency is actually
just a measure of the scheduler’s ability to increase the throughput of a system.
Other specific scheduling strategies or system features were not tested with these
mixes. For example, most platforms have the ability to checkpoint and restart
jobs if the machine suffers from some catastrophic failure. Thus, the entire time
spent in computation before the job was killed is not completely lost. Only that
time since the last checkpoint cannot be recovered. Also, other features, such as
gang scheduling or swapping, that might improve efficiency have not been inves-
tigated (Wong et al. 1999).

Though the efficiency is an excellent measure of the quality of a throughput
test, it does not take into account any machine-specific features. In other words,
a single throughput test may be measured to have a high efficiency on two differ-
ent platforms, and yet, the total walltime required to run the mix may be dramati-
cally different. To be more specific, a job run in dedicated mode will probably
take less walltime than a job run in production mode (i.e., a throughput test).
Because jobs run in nondedicated mode must compete with each other for
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resources, they will probably run slower. No measure of this contention between
jobs is included in Equation 1.

In order to better describe the total efficiency of a throughput test, it is neces-
sary to time each run of a throughput test in dedicated mode. Since in dedicated
mode only a single job is running (ignoring any contention that may occur
between the system and the job), the best possible, or shortest, time is obtained
for a job on a specific architecture. These times can be used to further extend the
concept of throughput efficiency to compute a total efficiency by

X Nit;
4

TE =
Y NT;
14

@

where ¢; is the dedicated time of the ith job run on N; number of processors, and
T; is the amount of walltime required for the ith job executed in the throughput
on the same number of processors.

In this way, if the architecture handles the contention of resources perfectly,
then the time of run in a throughput test, 7;, will be equal to the dedicated time,
t;, and a score of unity will be obtained.! Therefore, the closer to this perfect
score, the better a system handles multiple jobs executing at the same time.

Throughout the creation of this benchmark, dedicated and nondedicated tim-
ings were gathered for all the representative codes and test cases. Using these
“best” times, the total efficiency of both throughput tests as calculated by Equa-
tion 2 was computed and is also included in Table 39. Note that in both cases a
significant drop in the total efficiency was realized, with Mix A again showing a
higher efficiency. However, here the disparity between the two mixes is much
less than for the total efficiency.

An obvious effect of this type of comparison is that Equation 2 can be used to
compare different architectures. By obtaining the dedicated timings of all the
jobs in the throughput tests across all the SUTs, a measure of the best possible
throughput efficiency can be obtained. By using the shortest dedicated time
across all platforms, ¢; in Equation 2, for a given job, a theoretical limit of the
total number of CPU hours needed for the throughput test can be obtained. Com-
paring this to the actual number of CPU hours allows for the comparison of
throughput tests run across multiple platforms.

Also, in Mix B, the large CTH job did not complete for this particular run-
ning of the test. One way to compensate for failure of a job in a throughput test
is to assume that the job completed in some specified amount of time (e.g., the
dedicated time for the job on that platform), and then add the corresponding num-
ber of CPU hours to the total for the throughput test. However, since the purpose
of this particular job was to test the scheduling of a full configuration run during
the mix, it is significant that this job did not complete. Therefore, the authors
recommend that the failure of a full configuration job in a throughput test

! This is, of course, assuming that consistent timings can be obtained. There will be variations in
the timings of a job from run to run.
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invalidate the test. The importance of running a job that uses all of the processors
is key to the understanding and scoring system performance.

Finally, suppose when checking for correctness it is found that certain jobs
ran to completion but did not produce the right answer. For an isolated instance
of this in a throughput test, a solution similar to that applied above can be used.
One suggestion is to use the “longest” dedicated time measured across all plat-
forms to apply somewhat of a penalty for not producing an acceptable answer.
This too is arbitrary and would have to be set in the rules of the throughput tests
before it was given to the vendors.

Future Throughput Tests

Throughput tests give an excellent measure of the ability of a new system to
perform given tasks representative of a specific site’s workload. Currently, no
synthetic benchmark or tool is capable of taking measurements on a working
environment in order to model the behavior of the environment on a new plat-
form. Until such time when that ability becomes available, defining mixes of
application codes with representative test cases is by far the best measure of a
new system’s capability. Combining this knowledge with that obtained from ded-
icated runs gives the purchaser of new architecture confidence that the best deci-
sion has been made.

In addition to the above tests, more can be studied during the running of the
throughput mixes. One of the greatest concerns of HPCs today is their ability to
recover from a catastrophic failure. In the event of a system panic and reboot,
how much time is lost in the recovery process? Therefore, a simple addition to
the throughput test is to schedule a system shutdown and reboot in the mix. This
would redefine the efficiency of the throughput test slightly since the time of
shutdown/reboot would need to be included. Hence, Equation 1 becomes

L NT;
i

TNT+S) ®)

E
where S is the total amount of time of the shutdown/reboot. With the inclusion
of the shutdown/reboot, a new system may showcase its ability to checkpoint and
restart jobs. Without checkpointing, not only is the walltime of the reboot lost,
but also the time spent by the jobs currently running at the time of the shutdown.
As systems and users’ jobs get larger, this time could be substantial.

Furthermore, in the throughput tests described here, the full configuration
jobs often ended up waiting a large amount of time in the queue. Hence, these
jobs were usually run last. In a working environment where new jobs are con-
stantly being submitted, a large configuration job may never run. Thus, the queue
must force the job to be run by increasing its priority to a higher level than the
newly submitted jobs. This will cause the queue to starve jobs for resources; that
is, processors will be idle even though valid jobs may be run. The ability of a
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queuing system to push large jobs through can easily be tested by requiring that
the full configuration jobs be run at certain times during the throughput test.
Although this idea was discussed for TI-01 benchmark; it was not implemented.

Another novel idea is to allow a vendor or the system itself to generate either
a throughput mix or the most efficient order of submission. In this work, the
order and time of the submission of jobs was dictated to the vendors. One can
imagine, though, that slight changes in the order of submission could result in
dramatic changes in the efficiencies of the throughput tests. Also, since the ven-
dors know their architectures best, the vendors could define a throughput test
with certain criteria to best showcase their platform. This would aid in the allo-
cation of resources of CPU hours on specific architectures for certain types of
applications.
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5 Final Remarks

Directions for Future Research

Throughout the creation and testing of this benchmark test package, several
practical considerations were noted that would have enhanced its quality. With
additional time, more applications could have been selected, obtained, tested, and
included in the final suite of codes, and the test package’s portability, compact-
ness, and scalability improved. The end result would have been a more represen-
tative and easy-to-use test package. Thus, the vendors would have been able to
do a more thorough job of running the required tests, perhaps even performing
extensive code optimizations. These considerations suggest several possible
avenues for further work; these are discussed below.

Construction of a kernel-based HPC benchmark

As noted in the introduction, kernel-based benchmark test packages are an
alternative to the use of entire application codes. Because they are significantly
smaller than full-fledged applications, they are inherently more portable and
maintainable. If properly constructed, they may be designed to accept an input
parameter that controls the size of the problem to be solved; this helps address
the issue of benchmark scalability and helps prevent test package obsolescence.
Specifically, this effort would proceed as follows:

a. Identify representative codes from the DoD HPC user community, draw-
ing from the experiences of the TI-01 test suite.

b. Use appropriate performance tools (e.g., TotalView and PAPI) to identify
the computation/communication kernels in these codes.

c¢. Extract those kernels and prepare driver programs to read or construct on
the fly appropriate scalable test data.

d. Validate the kernels using appropriate statistical techniques, showing the
correlation between the performance of the kernel and the performance of
the parent code.
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e. “Productize” the test package so that it may be installed and executed
conveniently on a range of HPC platforms.

HPC scheduler simulation

Crucial to the performance of any computer system is the effectiveness of the
job scheduler. In the case of HPC systems, this is particularly true due to the
large number of CPUs that may be idle if the batch scheduler is unable to pack
jobs tightly. Another issue related to the job scheduler involves maintaining high
utilization while also providing short job turnaround times. Unfortunately, these
two goals are often conflicting, and each can be only partially achieved.

Studying these issues is facilitated by a scheduler simulator, which accepts a
stream of simulated jobs as input and records utilization and wait time metrics as
outputs. Each simulated job consists of a number of CPUs, estimated walltime,
actual walltime, and start time. A prototype simulator would serve as the starting
point for this work. Specifically, this effort would proceed as follows:

a. Gather actual historical job data from ERDC HPC systems as input for
the simulator.

b. Modify the simulator to handle multiple job classes (challenge, primary,
background).

¢. Compare the effect of using different scheduling algorithms on utilization
and wait time; specifically study no-backfill, strict-backfill, and relaxed-
backfill strategies with various tuning parameters.

d. Study the effect of more accurate user estimates of job walltime on uti-
lization and wait time; currently there seems to be little penalty with
greatly overestimating a job’s run time.

HPC system simulation

The TI-01 benchmark activity is evidence of the HPCMPO’s interest in fore-
casting the performance of application codes on future HPC systems. One
approach, of course, is to extrapolate from benchmark data; however, using trend
lines beyond the range of the gathered data is always risky. Another approach is
to gather data on application programs (e.g., number of CPUs, number and size
of messages passed, number of floating-point operations, and number and size of
I/O operations) and construct a statistical, least-squares type model of system
performance tailored to a system with known or projected hardware performance
characteristics. This approach is dependent on gathering sufficient data points on
which to base the model and may not accurately forecast the effects of interac-
tions between the independent variables. A third approach, the one proposed
here, involves the construction of a simulation model of a system’s performance.
Specifically, each of the CPUs on a parallel system would be represented by sev-
eral queues: one to provide compute services, one for I/O services, one for send-
ing messages, and one for receiving messages. The number, configuration, and
service times associated with these queues would be chosen to reflect the
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hardware and software architecture of the actual or hypothetical system being
studied. To run a job, profiling data would be gathered, using tools such as Vam-
pir, on candidate applications. These data, represented as a series of requests for
service on each CPU, would be fed as input to the simulator. Specifically, this
effort would proceed as follows:

a. Gather job profile data from one or more actual DoD applications to serve
as input for the simulator.

b. Write a prototype simulator to model one of the existing DoD HPC sys-
tems (e.g., IBM SP3); ideally, a simulation language such as Simscript
would be used for this task, but it could be written in a scripting language.

¢. Compare the simulator’s predicted performance with the modeled sys-
tem’s actual performance in order to calibrate the model.

d. Perform a simulation of the same code with more CPUs and/or a different
code to validate the simulator’s performance.

e. Integrate this simulator with the scheduler simulator above to simulate a
job stream.

Conclusions and Recommendations

The benchmark test package documented in this report was developed to
respond to a critical need of the DoD HPCMP. In the absence of a standard DoD
HPC benchmark and with the necessity to procure the next generation of HPCs, a
benchmark test package was constructed using actual application codes in use at
all of the MSRCs. Based on the analysis of system usage at each site, a suite of
13 codes was selected to represent the different CTAs. These 13 codes, with
multiple inputs and processor configurations, were used to construct both dedi-
cated and throughput tests to be run by the vendors.

- Practically, the construction and execution of a complicated benchmark test
package is a nontrivial task. Even excluding the considerable effort required to
execute individual test cases, construct the throughput mixes, and document the
package, merely identifying and acquiring the codes and their inputs is a time-
consuming activity. ‘

Though the resulting benchmark test package provides a useful tool for the
evaluation of HPC systems, the authors sincerely hope that the research direc-
tions noted above will be pursued. Specifically, the quality of the HPCMP
benchmark test package would be greatly improved if the package was revised
and enhanced on a yearly basis. Perhaps CHSSI and Challenge Projects should
be required to produce a representative kernel (code and input data) to help keep
the test package up-to-date.

As part of such an ongoing activity, some effort should be devoted to
automating the installation and execution of the test package. This would include
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construction of a software framework written in sh, Perl, make, and/or some
other combination of languages and tools. Compilation, test execution, and gath-
ering of metrics would be handled by software in a reliable and consistent fash-
jon. The end result would be a more representative, easy to use, and, most
importantly, believable test package that could better evaluate new architectures
for DoD use.
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Appendix A
Glossary of Acronyms

1-D
2-D
3-D
AFB
AFRL
ARL

ASC

BLAS
BWG
CCM
ccNUMA
CEA
CEN
CFD
CFES
CHSSI
CMG

One-dimensional

Two-dimensional

Three-dimensional

Air Force Base

Air Force Research Laboratory (at Wright-Patterson AFB, Ohio)
Army Research Laboratory (MSRC site at Aberdeen, Maryland)

Aeronautical Systems Center (MSRC site at Wright-Patterson
AFB, Ohio)

Basic Linear Algebra Subroutines

Benchmark Working Group

Computational Chemistry and Materials Science (CTA)
Cache-coherent nonuniform memory access

Computational Electromagnetics and Acoustics (CTA)
Computational Electronics and Nanoelectronics (CTA)
Computational Fluid Dynamics (CTA)

Computational Field Simulation

Common HPC Software Support Initiative (HPCMP initiative) |

Computational Migration Group (former name of CS&E at the
ERDC MSRC)
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CPU
CS&E

CSC
CSM
CTA
CTH

CWO
DoD
EQM
ERDC

FEMD
FFT

flop

fma

FMS
GAMESS

GB

HPC
HPCMP
HPCMPO
HPF

IBM
ICEPIC

A2

Central processing unit

Computational Science and Engineering Group (new name of
CMG at the ERDC MSRC)

Computer Sciences Corporation
Computational Structural Mechanics (CTA)
Computational Technology Area

CSQ to the Three-Halves (application program). CSQ stands for
“CHARTD SQuared;” CHARTD stands for ‘“Computational
Hydrodynamics And Radiative Thermal Diffusion;” CHARTD,
CSQ, and CTH are 1-D, 2-D, and 3-D codes, respectively.

Climate/Weather/Ocean Modeling and Simulation (CTA)
Department of Defense
Environmental Quality Modeling and Simulation (CTA)

Engineer Research and Development Center (MSRC site at
Vicksburg, Mississippi)

Finite Element Molecular Dynamics (application program)
Fast Fourier transform

Floating-point operation(s); plural determined by context
Fused multiply-and-add (IBM RS/6000 machine instruction)
Forces Modeling and Simulation/C4I (CTA)

General Atomic Molecular Electronic Structures System (appli-
cation program)

Gigabyte, 2%° bytes (approximately one billion bytes)
High Performance Computing

HPC Modernization Program

HPCMP Office (at Aﬂington, Virginia)

High Performance Fortran

International Business Machines

Improved Concurrent Electromagnetic Particle-In-Cell (applica-
tion program)
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MT
KB

Ksgs

LES
LESLIE3D

LOC
MB

Metis

Mflop/s
MHz

MIPS

MPI
MSRC
MSU
MUSCL

NAS
NAVO

NLOM
NP
NRL
NSWC
02K
03K

Integrated Modeling and Test Environments (CTA)
Kilobyte, 2'° bytes (approximately one thousand bytes)

Kinetic energy at the subgrid scale, same as the kinetic energy of
the turbulence

Large-eddy simulation

Large-Eddy Simulation LInear Eddy model in 3 Dimensions
(application program)

Lines of code
Megabyte, 2% bytes (approximately one million bytes)

A software package for partitioning unstructured graphs, parti-
tioning meshes, and computing fill-reducing orderings of sparse
matrices; “metis” is the Greek word for wisdom*

Millions of floating-point operations per second
Millions of hertz

Millions of instrictions per second, or the name of a manufac-
turer of microprocessors, depending on the context

Message Passing Interface
Major Shared Resource Center (HPCMP initiative)
Mississippi State University (at Starkville, Mississippi)

Monotone upwind scheme for scalar conservation laws (due to
van Leer)

National Aerospace Simulation

Naval Oceanographic Office (MSRC site at Stennis Space Cen-
ter, Mississippi)

NRL Layered Ocean Model (application program)
Number of processors

Naval Research Laboratory (at Washington, D.C.)
Naval Surface Warfare Center (at Dahlgren, Virginia)
SGI Origin 2000

SGI Origin 3000
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ParMetis
PBS
POWER

POWER2SC

PVM

QR

RCS
SARA

SARA-2D
SARA-3D
SEACAS

SGI
SHMEM
SIP

SMP
SNL
Sp2
SPAWAR
SUT

TB

TI-01
UNCLE

USS_UNCLE

Parallel version of Metis
Portable Batch System

Performance Optimization With Enhanced RISC (first generation
implementation of IBM’s RS/6000 microprocessor architecture)

POWER?2 Super Chip (single-chip second generation implemen-
tation of IBM’s RS/6000 microprocessor architecture)

Parallel Virtual Machine (application program to facilitate run-
ning parallel applications)

Not an acronym; refers to the factorization of a matrix A into the
matrix product of Q times R (QR) where Q is orthogonal and R
is upper triangular. The QR algorithm is used to determine the
eigenvalues of the matrix A.

Radar cross section

Structural Acoustic Radiation Analyzer (family of application
programs)

SARA for 2-D problems (application program)
SARA for 3-D problems (application program)

Sandia National Laboratories Engineering Analysis Code Access
System

Silicon Graphics, Inc.

Shared Memory Access Library (Cray software pro&uct)
Signal/Image Processing (CTA)

Symmetric multiprocessor

Sandia National Laboratories (at Albuquerque, New Mexico)
IBM SP with POWER2SC nodes

Space and Naval Warfare

System under test

Terabyte, 2% bytes (approximately one trillion bytes)
Technology Insertion 2001 (HPCMP acquisition program)
UNsteady Computation fieL.d Equations (application program)

Utilities for Solver Setup for UNCLE
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Appendix B
Benchmark Code Issues

This appendix discusses issues for each code that had to be overcome before
the test application was included in the final benchmark package. These issues
include the portability of the codes as well as compiliation problems/solutions
encountered by the authors.

CHARGE

CHARGE is quite portable; the benchmark team experienced minimal diffi-
culty in running it on a T3E, SP2, SMP, and O2K. No source code modifications
were performed. To improve performance, compiler options were specified to
inline the functions BuildCell, GetU1StencilData, LoadFluxMatrices, Com-
puteFaceFlux, and UpdateCellSolution.

As noted above, four steps (patchtrans through CHARGE) are required to
run CHARGE. Furthermore, input data resided in remotely mounted disks,
while the better performance was attained when running CHARGE from local
workspace directories. To facilitate this process and spare the user the task of
interactively setting up the various input files, a script, charge.run, was created
to perform all of the job steps. Even though the first three serial steps were run
on the parallel system, their total run time compared to the charge step was negli-
gible.

CObalt60

On SGI platforms, it was discovered that the Cobaltgg and ParMETIS
source codes should be compiled with the —64 option (for 64-bit pointers) to
enable the larger problems to run. Thus, the compiler flags for the Origins in
make-cobalt were
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FFLAGS="-64 -freeform -02 -mips4 -OPT:fast_sqrt=0ON \
-TARG:platform=ip35"
CFLAGS="-64 —-I ParMetis.v1.0 -Dsgi"

Also, some MPI environment variables had to be increased from their default SGI
values to the following to be sufficient for all three test problems: :

setenv MPI_TYPE MAX 200000
setenv MPI_GROUP_MAX 500
setenv MPI_COMM MAX 1000

Finally, the vendor submissions from SGI indicated that the dplace utility was
used for optimal memory and process placement in a dedicated run. Only logical
placement was requested. The placement files (named dplace.in) were all of the
form

memories (NPROCS+3)/4 in topology cube
threads NPROCS+1
distribute threads 1:NPROCS across memories

where NPROCS was edited to be the number of processors requested by the job.
In general, dplace was used for the dedicated applications, but not used for the
jobs in the throughput mixes. The execute line in the CoMPIRUN file was then
changed by SGI to

timex -pmt $RUN -np S$proc SDPLACE $SCRATCH/cobalt \
< S$SCRATCH/COIN.S$S \
> SSCRATCH/CoOUT. $$

where the DPLACE environment variable was set to dplace —place
dplace. i to allow the use of dplace during dedicated runs.

CTH

It should be noted that for some platforms, namely the Cray T3E, patches
need to be applied to the CTH99 version of the code. These patches are
Mar99.patchl and Mar99.patch2. After applying both patches, the code still did
not execute correctly on the T3E. After some investigation, it was discovered
that Sandia does not recommend that the second of the two patches be applied.
After applying only the first patch, the code was successfully compiled and pro-
duced the correct results on the T3E.
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FEMD

During the process of compiling and testing the code for different platforms,
makefiles were created for different architectures. With minor modifications,
namely to some timing routines and to the C preprocessor statements, the code
successfully compiled and completed on the SP2, SMP, O2K, and T3E at ERDC.
However, it was found that on some platforms, higher levels of optimization
could cause the code to hang. Further work will be needed to find and explore
those routines which may be corrupted by the compiler’s optimization.

FEMWATER123

Since FEMWATER123 was highly portable and representative of the type of
simulations being performed in the CTA of Environmental Quality Management
(EQM), it was selected as the sole representative of EQM. However, for a fixed
problem size, FEMWATER123 does not scale very well as the number of pro-
cessors increases. For the problem size that was included in the benchmark, the
best timings were obtained between 32 and 40 processors. Due to a crossover
between being computationally bound at low numbers of processors and commu-
nicationally bound at high numbers of processors, using more than 40 processors
will actually slow the code down.

FEMWATER, like many other parallel codes, has poor scaling behavior (i.e.,
for the problem sizes of interest to researchers, using more than 32-64 CPUs does
little to improve performance). In fact, it was precisely because of this type of
behavior that FEMWATER123 was included in the benchmark suite, since it
represents a significant class of DoD usage of HPC resources.

GAMESS

GAMESS is quite portable; the benchmark team experienced minimal diffi-
culty in running it on a T3E, SP2, SMP, O2K, and O3K. The T3E version used
SHMEM as the communication mechanism, while all other versions used MPIL.
No source code modifications were performed. Some minor changes were also
made to path names in the compile and execute scripts supplied with the code’s
distribution in order to conform to the local programming environment.

As with several other codes, input data resided in remotely mounted disks,
while better performance was attained when running CHARGE from a
workspace directory local to the parallel system. To facilitate the process of set-
ting up a job, a script was created to perform all of the job steps. Also,
GAMESS uses the Basic Linear Algebra Subroutines (BLAS); linking to a
BLAS version tuned for a particular platform should improve performance.
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ICEPIC
During compilation of ICEPIC, messages of the following form may result:

"objects.h", line 82.18: 1506-159 (E)
Bit-field type specified for ZShim is not valid.
Type unsigned assumed.

These warnings concern enumerations. According to some compiler man-pages,
the enumerations are legal in spite of the warnings. They may be ignored.

The following compiler command:

mpce —I../mp -DSP2 -DMPI -Q -DKR_C -03 -gstrict \
-garch=pwr2 -gtune=pwr2 -c VT.c

may cause the following warning message:

"WT.c", line 26.7: 1506-356 (W)
Compilation unit is empty.

It is empty unless VAMPIR is used. This message may also be ignored.

LESLIE3D

Before compiling the code, the user must specify the dimensions of the
domain with a PARAMETER statement in an include file, as in

parameter (igsizl=216, jgsizl=216, kgsizl=216)

as well as a processor grid configuration, as in

parameter (isizl = igsizl/4)
parameter (isiz2 = jgsizl/4)
parameter (isiz3 = kgsizl/4)

for a 4 x 4 x 4 processor grid. A recompilation of the code is necessary for any
change in the domain or processor grid dimensions. After compilation, an
executable mixing.x must be run to generate a binary file mixing.data prior to
execution of the LESLIE3D executable. The mixing.data file is the same for any
processor grid configuration for a given domain grid, but must be regenerated
with any change in the domain grid dimensions.

The code was modified slightly to use the access = "append’ clause
for opening a particular file when using a Fortran 77 and to use the position
= ’append’ clause when using Fortran 90. The programmer uses the pre-
processor directive ~DF 90 in the FFLAGS definition in the makefile to select the
Fortran 90 syntax.
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To turn off OpenMP on SGI platforms, the code was compiled without the
-mp flag and the following environment variables were set:

export OMP_NUM_THREADS=1
export MPC_NUM_THREADS=1
export MP_SET_NUMTHREADS=1

For the SMP runs, the code was compiled without the ~gsmp=omp flag and the
following environment variables were set:

export XLSMPOPTS="parthds=1"
export OMP_NUM_THREADS=1

On SGI platforms, the LESLIE3D source codes were compiled with the —64
option (for 64-bit pointers).

Finally, the vendor submissions from SGI indicated that the dplace utility
was used for optimal memory and process placement in a dedicated run. Only
logical placement was requested. The placement files (all named dplace.in) were
all of the form

memories (NPROCS+1)/4 in topology cube
threads NPROCS+1
distribute threads 1:NPROCS across memories

where NPROCS was edited to be the number of processors requested by the job.
In general, dplace was used for the dedicated applications, but not used for the
jobs in the throughput mixes.

MD-MuItiscaIe

MD-Multiscale was less portable than some of the other codes in this test
package. The benchmark team was unable to get the code to produce correct
results on the T3E, and two vendors that participated in these tests reported diffi-
culties related to excessive memory requirements. There are 229 allocate and
119 deallocate statements in the code, so a memory leak of some sort may be the
cause. Also the computational difficulties associated with solving multiscale
problems and with the physics of fractures may have contributed to the problems
encountered. In spite of this, the code ran correctly on an SP2, SMP, O2K, and
O3K.

A subtle error that appears to affect only execution on IBM POWER3-based
systems was discovered and corrected. The MPI library call MPI-CART-CRE-
ATE permits rank reassignments. Reassignment is not performed in IBM Paral-
Jel Environment 2.4, but is performed in Parallel Environment 3.1. This reorder-
ing can be defeated simply by changing the fifth argument to MPI-CART-CRE-
ATE from .true. to .false.'

1 The authors acknowledge Farid Parpia of IBM for discovering this error.
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A few source code modifications were performed on four C source code files:
force-interface.edip.c, etime.c, pmine.c, and timing.c. These changes were made
during the attempt to move the code to the T3E and involved simplifying the sys-
tem-dependent way in which underscores were added to function names for C-
Fortran interfaces. Another minor change required by the T3E involved replacing
the call to the LAPACK double complex routine zhegv with the single complex
routine chegv. This involved defining appropriate C preprocessor variables.
Finally, the system of makefiles used to build MD-Multiscale was extensively
reworked to simplify building programs on multiple platforms. A top level
makefile was created to replace a shell script, and the makefiles in the subdirecto-
ries were modified. However, additional work should be done in this area to cen-
tralize the way in which compiler options are specified for compilations in differ-
ent subdirectories.

Finally, input data resided on disks remote to the parallel system, while the
better performance was attained when running MD-Multiscale from local
workspace directories. To facilitate this process and spare the user the task of
interactively setting up the various input files, a script, mdmulti.run, was created
to perform all of the job steps.

NLOM

Since NLOM has been ported and tested on many platforms, only one signif-
icant issue had to be resolved. On the ERDC O3K, if the latest SGI scientific
library (scs) was used for NLOM'’s FFT routines, the code would crash. If, how-
ever, the code was linked to the previous scientific library complib.sgimath, the
code would work properly. Note that the code also includes its own FFT routines
if a vendor library is not available. The supplied FFT routines were used for
benchmarking on the O3K.

PRONTO

It is necessary to install a significant portion of the SEACAS system in order
to use PRONTO. PRONTO has been compiled and run on a wide variety of
platforms and the distribution includes scripts to build and install on many
machines. However, PRONTO was not successfully ported to the Cray T3E.

SARA-3D

The vendor submissions from SGI indicated that the dplace utility was used
for optimal memory and process placement in a dedicated MPI-only run. Only
logical placement was requested. The placement files (all named dplace.in) were
all of the form
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memories (NPROCS+1)/4 in topology cube
threads NPROCS+1
distribute threads 1:NPROCS across memories

where NPROCS was set to the number of MPI processes requested by the job.
In general, dplace was used for the dedicated applications, but not used for the
jobs in the throughput mixes. dplace was not used for OpenMP-only or hybrid
MPI/OpenMP runs.

For pure OpenMP or hybrid MPI/OpenMP runs, the OMP-NUM-
THREADS environment variable was set to the number of OpenMP threads. For
hybrid MPY/OpenMP runs, the MPI-DSM-PPM environment variable was set to
4/OMP-NUM-THREADS to allow the threads to operate on the same memory
as its parent MPI process. On the O3K, 4 CPUs share a common memory, SO for
4 OpenMP threads,

setenv MPI_DSM PPM 1
while for 2 OpenMP threads,

setenv MPI_DSM_PPM 2.

UNCLE

Only one input problem was obtained from the developers for the benchmark
tests; the developers supplied the grid files for the problem to be executed for
only 8 and 16 processors. Hence, the vendors were unable to perform any scal-
ing analysis. Thus, a problem that can be scaled and have the grid distributed for
arbitrary numbers of processors would have been more desirable and representa-
tive. :

The code uses gmake to compile, and some of the routines have to be com-
piled with different optimization levels on different platforms. Furthermore, as of
this writing, a bug had been found in the new MIPSpro version 7.3.1.1 compiler
on the Origins. The code had to be compiled using version 7.3 in order to create
an executable program.
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Appendix C
Test Case Prioritization

This appendix describes the methodology for assigning scores to each job,
defining how well each job would fit into a mix. These scores were used in a
simple greedy algorithm to define the set of codes and input decks used in the
throughput tests. ’

First the notation for subscripts and superscripts is explained.

CTA

JOB

NPB

PRG
0T

cur

p1

1gt

NP

Subscript denoting data associated with the CTA of a job’s applica-
tion program.

Subscript denoting data associated with a particular job.

Subscript denoting data associated with a job’s number-of-processors
bin. For purposes of categorization, the range of processors is subdi-
vided into “bins” (e.g., a job requiring 12 CPUs falls into the 9-16
CPUs bin).

Subscript denoting data associated with a job’s application program.
Subscript denoting data associated with overall total node hours.

As the job selection algorithm proceeds, it keeps running totals of
various node hour quantities. This superscript denotes the current
value of such a total.

This superscript denotes the projected value of a total after some
job’s node hours are added.

This superscript denotes the target value of a node hour total speci-
fied by the algorithm’s input.

Number of processors on the SUT; in this case, 128.
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wr

CHir
CHy
CHETY
CH ips
CH pp
CHzg
CH g

Féra
F&,
Fipp
Fifs
FrRe
Scra
Snpp
SprG

Scraxnp

ScrTaxPRG

P

C2

Target walltime for the throughput test; here, 6 hr for Test A, and 4
hr for Test B.

Total target node hours for the throughput test; = NP * WT'.
Target node hours for current job’s CTA.

Current node hours for current job’s CTA.

Target node hours for current job’s NPB.

Current node hours for current job’s NPB.

Target node hours for current job’s PRG.

Current node hours for current job’s PRG.

Current fraction of node hours needed by CTA of current job.
=(CHE&, - CHZ)ICH Y r

Projected fraction of node hours needed by CTA of current job.
= (CHE, — CHE, — CH jop)/CHSr

Current fraction of node hours needed by NPB of current job.
= (CHypp ~ CHfipp)/CHior

Projected fraction of node hours needed by NPB of current job.
= (CH g — CHp — CH ;op)/CH

Current fraction of node hours needed by PRG of current job.
= (CH g — CHpg)/CH g

CTA score for current job; weights are subjective.

=0.6F%, +0.4FF,

NPB score for current job; weights are subjective.
=0.4F 5 +0.6F {3,

PRG score for current job.
= Fre

CTA x NPB cross product score for current job; favors jobs that have
both the neediest CTA and neediest NPB..br = ymax 0, Scy4 * S ypp

CTA x PRG cross product score for current job; favors jobs that have
both the neediest CTA and neediest PRG..br = y\max 0, Scza * Sprg

Subjective priority for current job.

Overall score for current job .br
= O SSCTA + 0 SSNPB + O 1SCTA><NPB + 0 ISCTAXPRG +P
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